scholarly journals Study on the Dynamic Problems of Double-Disk Rotor System Supported by Deep Groove Ball Bearing

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yang Liu ◽  
Jiyuan Han ◽  
Siyao Zhao ◽  
Qingyu Meng ◽  
Tuo Shi ◽  
...  

Aiming at the analysis of the dynamic characteristics of the rotor system supported by deep groove ball bearings, the dynamic model of the double-disk rotor system supported by deep groove ball bearings was established. In this paper, the nonlinear finite element method is used combined with the structural characteristics of deep groove ball bearings. Based on the nonlinear Hertz contact theory, the mechanical model of deep groove ball bearings is obtained. The excitation response results of the rotor system nodes are solved by using the Newmark-β numerical solution method combined with the Newton–Raphson iterative method. The vibration characteristics of the rotor system supported by deep groove ball bearings are studied deeply. In addition, the effect of varying compliance vibration (VC vibration) caused by the change in bearing support stiffness on the dynamics of the system is considered. The time domain and frequency domain characteristics of the rotor system at different speeds, as well as the influence of bearing clearance and bearing inner ring’s acceleration on the dynamics of the rotor system are analyzed. The research shows that the VC vibration of the bearing has a great influence on the motion of the rotor system when the rotational speed is low. Moreover, reasonable control of bearing clearance can reduce the mutual impact between the bearing rolling element and the inner or outer rings of the bearing and reduce the influence of unstable bearing motion on the vibration characteristics of the rotor system. The results can provide theoretical basis for the subsequent study of the nonlinear vibration characteristics of the deep groove ball bearing rotor system.

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Jing Liu ◽  
Yimin Shao ◽  
W. D. Zhu

Vibration characteristics of a deep groove ball bearing caused by a localized surface defect are greatly affected by defect sizes, such as the length, width, and depth. However, effects of the defect depth, the time-varying contact stiffness between the ball and defect, and the relationship between the time-varying contact stiffness and defect sizes have not been considered in previous defect models. In this work, a new defect model considering a new force–deflection relationship is presented to replace the Hertzian force–deflection relationship to describe the ball-line contact between the ball and defect edge. Both the time-varying displacement impulse and time-varying contact stiffness are considered. The relationship between the time-varying contact stiffness and defect sizes is obtained. Effects of defect sizes on the vibrations of the deep groove ball bearing, especially the defect depth that cannot be described by previous defect models, are investigated. The simulation results are compared with those from the previous defect models. The results show that the model developed can predict a more realistic impulse caused by a localized surface defect for dynamic simulation of the deep groove ball bearing. An experimental investigation is also presented to validate the proposed model.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2408
Author(s):  
Fanjie Li ◽  
Xiaopeng Li ◽  
Dongyang Shang

To study the vibration characteristics of deep-groove ball bearing, considering the influence of sliding, the dynamic model of the DGB 6205 system is established in this paper. The DGB 6205 system model includes the movement of the bearing inner ring in the X and Y directions, the rotation of the cage, the rotation movement of each ball, the revolution movement of each ball and the movement along the radial direction of each ball. Based on the system model, the differential equations of motion of the system are established, and the correctness of the model is verified by experiment. The slip characteristics of the DGB 6205 system are studied by numerical simulation. At the same time, the influence of time-varying load on the vibration characteristics of the system is studied. Then, the sensitivity of system parameters is analyzed. The results show that the sliding speed between the ball and the inner raceway is greater than that between the ball and the outer raceway. The radial vibration response of DGB 6205 system under time-varying load is less than that under constant load. The increase of radial clearance will increase the vibration response of DGB 6205 system.


Author(s):  
Bin Fang ◽  
Jinhua Zhang ◽  
Ke Yan ◽  
Jun Hong

Abstract This paper proposed a new four-degree-of-freedom dynamic model of the bearing-rotor system based on ball bearing without Raceway Control Hypothesis, and both the inertia forces of balls and the tilting motions of rotor are fully considering in the calculation of restoring forces and moments of ball bearings. Then the dynamic model are solved by the fourth-step Runge-Kutta method, and the dynamic responses of rotor system including the displacement, velocity and center orbits are obtained, and the influences of rotating speeds, eccentricity and symmetry of rotor are studied and analyzed. The results show that both the varying compliance of ball bearing and rotor eccentric force have a great influence on the dynamic responses and motion patterns of bearing-rotor system, and the titling motion of bearing-rotor should be considered in the analysis of asymmetric rotor or the symmetric rotor under some specific conditions.


1977 ◽  
Vol 99 (3) ◽  
pp. 346-352 ◽  
Author(s):  
H. H. Coe ◽  
B. J. Hamrock

An investigation was performed to determine the operating characteristics of 75-mm bore, arched outer-race bearings, and to compare the data with those for a similar, but conventional, deep groove ball bearing. Further, results of an analytical study, made using a computer program developed previously, were compared with the experimental data. Bearings were tested up to 28,000 rpm shaft speed with a load of 2,200 N (500 lb). The amount of arching was 0.13, 0.25, and 0.51 mm (0.005, 0.010, and 0.020 in.). All bearings operated satisfactorily. The outer-race temperatures and the torques, however, were consistently higher for the arched bearings than for the conventional bearings.


2017 ◽  
Vol 174 ◽  
pp. 808-814 ◽  
Author(s):  
Guangwei Yu ◽  
Meng Su ◽  
Wei Xia ◽  
Rui Wu ◽  
Qing Wang

2013 ◽  
Vol 633 ◽  
pp. 77-86
Author(s):  
Radivoje Mitrovic ◽  
Aleksandar Subic ◽  
Ivana Atanasovska

This paper presents a comprehensive analysis of the assembly processes for single-row ball bearings. There are two different types of assembly processes, which depend on ball numbers and ball bearing ring designs. In the case of deep groove ball bearings, assembly is usually undertaken through slight deformation of the outer ring to increase clearance for insertion of the final ball. As a result, the outer ring takes an elliptical instead of a circular shape and requires deformation to be below a critical level to avoid fracture. Causal analysis of outer ring fracture during assembly is the main goal of the presented analysis, based on the expressions of the Theory of Elasticity for the thin ring exposed to bending, as well as Finite Element Analysis (FEA). The theoretical and numerical results have been verified by experimental testing.


Friction ◽  
2021 ◽  
Author(s):  
K. E. Ch. Vidyasagar ◽  
R. K. Pandey ◽  
Dinesh Kalyanasundaram

AbstractIn case of lightly loaded radial ball bearings, failure mechanisms other than fatigue such as smearing of raceways due to increased frictional torque and vibrations often prevail. Hence, attempts have been made herein for reducing the frictional torque and minimizing the vibrations of a radial deep groove ball bearing employing surface textures at the inner race. Nanosecond pulsed laser was used to create texture (involving micro-dimples having different dimple area density) on the inner race of test bearings. Using an in-house developed test rig, frictional torque and vibrational parameters were measured at different speeds and light loads (i.e. in vicinity of 0.01C, where C is dynamic load capacity of radial ball bearing). Significant reduction in frictional torque and overall vibrations were found in the presence of micro-dimples on inner race at light loads irrespective of operating speeds. Even without satisfying the minimum load needed criteria for the satisfactory operation, substantial reduction in smearing marks was found on the races of textured ball bearings in comparison to conventional cases.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1105
Author(s):  
Jianhua Zhao ◽  
Lanchun Xing ◽  
Sheng Li ◽  
Weidong Yan ◽  
Dianrong Gao ◽  
...  

The magnetic-liquid double suspension bearing (MLDSB) is a new type of suspension bearing, with electromagnetic suspension as the main part and hydrostatic supports as the auxiliary part. It can greatly improve the bearing capacity and stiffness of rotor-bearing systems and is suitable for a medium speed, heavy load, and frequent starting occasions. Compared with the active electromagnetic bearing system, the traditional protective bearing device is replaced by the hydrostatic system in MLDSB, and the impact-rubbing phenomenon can be restrained and buffered. Thus, the probability and degree of friction and wear between the rotor and the magnetic pole are reduced drastically when the electromagnetic system fails. In order to explore the difference in the dynamic behavior law of the impact-rubbing phenomenon between the traditional protection device and hydrostatic system, the dynamic equations of the rotor impact-rubbing in three kinds of protection devices (fixed ring/deep groove ball bearing/hydrostatic system) under electromagnetic failure mode are established, and the axial trajectory and motion law of the rotor are numerically simulated. Finally, the dynamic behavior characteristics of the rotor are compared and analyzed. The results show that: Among the three kinds of protection devices (fixed ring/deep groove ball bearing/hydrostatic system), the hydrostatic system has the least influence on bouncing time, impact-rubbing force, and impact-rubbing degree, and the maximum impact-rubbing force of MLDSB is greatly reduced. Therefore, the protective bear is not required to be installed in the MLDSB. This study provides the basis for the theory of the “gap impact-rubbing” of MLDSB under electromagnetic failure, and helps to identify electromagnetic faults.


2015 ◽  
Vol 1095 ◽  
pp. 883-887 ◽  
Author(s):  
Bao Shou Sun ◽  
Geng Feng ◽  
Xue Dao Shu ◽  
Liang Tao Qi ◽  
Shuo Pang

There is a close relationship between cold ring rolling product quality and ring diameter growth rate in cold rolling process, but the technological parameters are main factors in influencing ring diameter growth. The paper used both numerical simulation and experimental verification to study the effect of the core roller speed and wide-diameter ratio on increment of ring diameter in cold rolling process of deep groove ball bearing inner ring. It is found that the core roller has greater influence on diameter growth, and the faster the feeding speed of core roller is , the greater the increment of ring diameter is. Finally, it is verified that the agreement between numerical simulation and experiments is good.


Sign in / Sign up

Export Citation Format

Share Document