scholarly journals KLF2 Protects against Osteoarthritis by Repressing Oxidative Response through Activation of Nrf2/ARE Signaling In Vitro and In Vivo

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Xiang Gao ◽  
Shuangpeng Jiang ◽  
Zhangzhen Du ◽  
Angtin Ke ◽  
Qingwei Liang ◽  
...  

Osteoarthritis (OA) is a multifactorial and inflammatory disease characterized by cartilage destruction that can cause disability among aging patients. There is currently no effective treatment that can arrest or reverse OA progression. Kruppel-like factor 2 (KLF2), a member of the zinc finger family, has emerged as a transcription factor involved in a wide variety of inflammatory diseases. Here, we identified that KLF2 expression is downregulated in IL-1β-treated human chondrocytes and OA cartilage. Genetic and pharmacological overexpression of KLF2 suppressed IL-1β-induced apoptosis and matrix degradation through the suppression of reactive oxygen species (ROS) production. In addition, KLF2 overexpression resulted in increased expression of heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase quinone 1 (NQO1) through the enhanced nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Further, Nrf2 inhibition abrogated the chondroprotective effects of KLF2. Safranin O/fast green and TUNEL staining demonstrated that adenovirus-mediated overexpression of KLF2 in joint cartilage protects rats against experimental OA by inhibiting cartilage degradation and chondrocyte apoptosis. Immunohistochemical staining revealed that KLF2 overexpression significantly decreases MMP13 expression caused by OA progression in vivo. This in vitro and in vivo study is the first to investigate the antioxidative effect and mechanisms of KLF2 in OA pathogenesis. Our results collectively provide new insights into OA pathogenesis regulated by KLF2 and a rationale for the development of effective OA intervention strategies.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Dawei Cai ◽  
Thomas W. Huff ◽  
Jun Liu ◽  
Tangbo Yuan ◽  
Zijian Wei ◽  
...  

Sinapic acid (SA) modulates the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in chondrocytes. In order to test the hypothesis that SA is protective against the development of osteoarthritis (OA), primary mouse chondrocytes were treated in vitro with SA and the promoter transactivation activity of heme oxygenase 1 (HO-1), nuclear translocation of Nrf2, and protein expression of HO-1 were assayed. To test the hypothesis in vivo, a destabilization of the medial meniscus (DMM) model was used to induce OA in the knees of mice and SA was delivered orally to the experimental group. The chondrocytes were harvested for further analysis. The expression of HO-1 was similarly upregulated in cartilage from both the experimental mice and human chondrocytes from osteoarthritic knees. SA was found to enhance the promoter transactivation activity of heme oxygenase 1 (HO-1) and increase the expression of Nrf2 and HO-1 in primary chondrocytes. Histopathologic scores showed that the damage induced by the DMM model was significantly lower in the SA treatment group. The addition of a HO-1 inhibitor with SA did not show additional benefit over SA alone in terms of cartilage degradation or histopathologic scores. The expression of TNF-α, IL-1β, IL-6, MMP-1, MMP-3, MMP-13, ADAMTS4, and ADAMTS5 was significantly reduced both in vitro and in vivo by the presence of SA. Protein expressions of HO-1 and Nrf2 were substantially increased in knee cartilage of mice that received oral SA. Our results suggest that SA should be further explored as a preventative treatment for OA.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


2021 ◽  
Author(s):  
Ding-Chao Zhu ◽  
Yi-Han Wang ◽  
Jia-Hao Lin ◽  
Zhi-Min Miao ◽  
Jia-Jing Xu ◽  
...  

Osteoarthritis (OA) is a common degenerative joint disease characterized by articular cartilage degeneration and inflammation. Currently, there is hardly any effective treatment for OA due to its complicated pathology and...


2018 ◽  
Vol 49 (6) ◽  
pp. 2304-2319 ◽  
Author(s):  
Zhenhui Lu ◽  
Qin Liu ◽  
Lei Liu ◽  
Huayu Wu ◽  
Li Zheng ◽  
...  

Background/Aims: 3, 4, 5-trihydroxy-N-{4-[(5-methylisoxazol-3-yl) sulfamoyl] phenyl} benzamide (JEZTC), synthesized from gallic acid (GA) and sulfamethoxazole (SMZ), was reported with chondroprotective effects. However, the effects of JEZTC on osteoarthritis (OA) are still unclear. The goal of this study was to investigate the anti-osteoarthritic properties of JEZTC on interleukin-1-beta (IL-1β) stimulated chondrocytes in vitro and a rabbit anterior cruciate ligament transaction (ACLT) OA model in vivo. Methods: Changes in matrix metalloproteinases (MMPs) and apoptosis genes (bax, caspase 3 and tnf-α) and OA-specific protein (MMP-1) expression in vitro and in vivo were detected by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry. The production of reactive oxygen species (ROS) were investigated upon the treatment of JEZTC in chondrocytes processed with IL-1β in vitro and OA in vivo. Effect of JEZTC on OA was further studied by the macroscopic and histological evaluation and scores. The key proteins in signaling pathways inMAPK/P38, PI3KAkt and NF-κB also determined using western blot (WB) analysis. Results: JEZTC could significantly suppress the expression of MMPs and intracellular ROS, while meaningfully increase the gene expression of tissue inhibitor of metalloproteinase-1 (TIMP-1). Moreover, there was less cartilage degradation in JEZTC group compared with the phosphate-buffered saline (PBS) group in vivo. Results also indicated that JEZTC exerts effect on OA by regulating MAPKs and PI3K/Akt signaling pathways to activate NF-κB pathway, leading to the down-regulation of MMPs. The chondro-protective effect of JEZTC may be related with its ability to inhibit chondrocyte apoptosis by reduction of ROS production. Conclusion: JEZTC may be a possible therapeutic agent in the treatment of OA.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3394 ◽  
Author(s):  
Seon Min Lee ◽  
Na-Hyun Kim ◽  
Sangbum Lee ◽  
Yun Na Kim ◽  
Jeong-Doo Heo ◽  
...  

Crohn’s disease (CD) and ulcerative colitis (UC), collectively referred to as inflammatory bowel disease (IBD), are autoimmune diseases characterized by chronic inflammation within the gastrointestinal tract. Debromohymenialdisine is an active pyrrole alkaloid that is well known to serve as a stable and effective inhibitor of Chk2. In the present study, we attempted to investigate the anti-inflammatory properties of (10Z)-debromohymenialdisine (1) isolated from marine sponge Stylissa species using an intestinal in vitro model with a transwell co-culture system. The treatment with 1 attenuated the production and gene expression of lipopolysaccharide (LPS)-induced Interleukin (IL)-6, IL-1β, prostaglandin E2 (PGE2), and tumor necrosis factor-α in co-cultured THP-1 macrophages at a concentration range of 1–5 μM. The protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were down-regulated in response to the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) translocation into the nucleus in cells. In addition, we observed that 1 markedly promoted the nuclear translocation of nuclear factor erythroid 2 related factor 2 (Nrf2) and subsequent increase of heme oxygenase-1 (HO-1) expression. These findings suggest the potential use of 1 as a pharmaceutical lead in the treatment of inflammation-related diseases including IBD.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dahu Qi ◽  
Hui Liu ◽  
Xuying Sun ◽  
Danni Luo ◽  
Meipeng Zhu ◽  
...  

Osteoporosis is characterized by bone loss and destruction of trabecular architecture, which greatly increases the burden on the healthcare system. Excessive activation of osteoclasts is an important cause of osteoporosis, and suppression of osteoclastogenesis is helpful for the treatment of osteoporosis. Pristimerin, a natural compound, possesses numerous pharmacological effects via inactivating the NF-κB and MAPK pathways, which are closely related to osteoclastogenesis process. However, the relationship between Pristimerin and osteoclastogenesis requires further investigation. In this research, we examined the effect of Pristimerin on osteoclastogenesis and investigated the related mechanisms. Our results showed Pristimerin inhibited RANKL-induced osteoclast differentiation and osteoclastic bone resorption in vitro, with decreased expression of osteoclastogenesis-related markers including c-Fos, NFATc1, TRAP, Cathepsin K, and MMP-9 at both mRNA and protein levels. Furthermore, Pristimerin suppressed NF-κB and MAPK signaling pathways, reduced reactive oxygen species (ROS) production and activated the nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling during osteoclastogenesis. Our in vivo experiments showed that Pristimerin remarkably ameliorated ovariectomy-induced bone loss, reduced serum levels of TNF-α, IL-1β, IL-6, and RANKL, and increased serum level of osteoprotegerin (OPG). Therefore, our research indicated that Pristimerin is a potential chemical for the treatment of osteoporosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Si Huang ◽  
Haiyan Yuan ◽  
Wenqun Li ◽  
Xinyi Liu ◽  
Xiaojie Zhang ◽  
...  

Polygonatum sibiricum, a well-known life-prolonging tonic in Chinese medicine, has been widely used for nourishing nerves in the orient, but the underlying molecular mechanisms remain unclear. In this study, we found that P. sibiricum polysaccharides (PSP) ameliorated 1-methyl-4-phenyl-1,2.3,6-tetrahydropyridine- (MPTP-) induced locomotor activity deficiency and dopaminergic neuronal loss in an in vivo Parkinson’s disease (PD) mouse model. Additionally, PSP pretreatment inhibited N-methyl-4-phenylpyridine (MPP+) induced the production of reactive oxygen species, increasing the ratio of reduced glutathione/oxidized glutathione. In vitro experiments showed that PSP promoted the proliferation of N2a cells in a dose-dependent manner, while exhibiting effects against oxidative stress and neuronal apoptosis elicited by MPP+. These effects were found to be associated with the activation of Akt/mTOR-mediated p70S6K and 4E-BP1 signaling pathways, as well as nuclear factor erythroid 2-related factor 2- (Nrf2-) mediated NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (Gclc), and glutamate-cysteine ligase modulatory subunit (Gclm), resulting in antiapoptotic and antioxidative effects. Meanwhile, PSP exhibited no chronic toxicity in C57BJ/6 mice. Together, our results suggest that PSP can serve as a promising therapeutic candidate with neuroprotective properties in preventing PD.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 167
Author(s):  
Seyed Hossein Shahcheraghi ◽  
Fateme Salemi ◽  
Niloufar Peirovi ◽  
Jamshid Ayatollahi ◽  
Waqas Alam ◽  
...  

Nuclear factor erythroid 2 p45-related factor (2Nrf2) is an essential leucine zipper protein (bZIP) that is primarily located in the cytoplasm under physiological conditions. Nrf2 principally modulates endogenous defense in response to oxidative stress in the brain.In this regard, Nrf2 translocates into the nucleus and heterodimerizes with the tiny Maf or Jun proteins. It then attaches to certain DNA locations in the nucleus, such as electrophile response elements (EpRE) or antioxidant response elements (ARE), to start the transcription of cytoprotective genes. Many neoplasms have been shown to have over activated Nrf2, strongly suggesting that it is responsible for tumors with a poor prognosis. Exactly like curcumin, Zinc–curcumin Zn (II)–curc compound has been shown to induce Nrf2 activation. In the cancer cell lines analyzed, Zinc–curcumin Zn (II)–curc compound can also display anticancer effects via diverse molecular mechanisms, including markedly increasing heme oxygenase-1 (HO-1) p62/SQSTM1 and the Nrf2 protein levels along with its targets. It also strikingly decreases the levels of Nrf2 inhibitor, Kelch-like ECH-associated protein 1 (Keap1) protein.As a result, the crosstalk between p62/SQSTM1 and Nrf2 could be used to improve cancer patient response to treatments. The interconnected anti-inflammatory and antioxidative properties of curcumin resulted from its modulatory effects on Nrf2 signaling pathway have been shown to improve insulin resistance. Curcumin exerts its anti-inflammatory impact through suppressing metabolic reactions and proteins such as Keap1 that provoke inflammation and oxidation. A rational amount of curcumin-activated antioxidant Nrf2 HO-1 and Nrf2-Keap1 pathways and upregulated the modifier subunit of glutamate-cysteine ligase involved in the production of the intracellular antioxidant glutathione. Enhanced expression of glutamate-cysteine ligase, a modifier subunit (GLCM), inhibited transcription of glutamate-cysteine ligase, a catalytic subunit (GCLC). A variety of in vivo, in vitro and clinical studies has been done so far to confirm the protective role of curcumin via Nrf2 regulation. This manuscript is designed to provide a comprehensive review on the molecular aspects of curcumin and its derivatives/analogs via regulation of Nrf2 regulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Chan Lee ◽  
Gyu Hwan Park ◽  
Seong-Ryong Lee ◽  
Jung-Hee Jang

β-amyloid peptide (Aβ), a major component of senile plaques, plays important roles in neuropathology of Alzheimer's disease (AD). An array ofin vitroandin vivodata indicates that Aβ-induced neuronal death is mediated by oxidative stress. In this study, we aimed to investigate effects of sulforaphane (SUL), an isothiocyanate in cruciferous vegetables, on Aβ-induced oxidative cell death in SH-SY5Y cells. Cells treated with Aβ25–35exhibited decreased cell viability and underwent apoptosis as determined by MTT assay and TUNEL, respectively. Aβ25–35-induced cytotoxicity and apoptotic characteristics such as activation of c-JNK, dissipation of mitochondrial membrane potential, altered expression of Bcl-2 family proteins, and DNA fragmentation were effectively attenuated by SUL pretreatment. The antiapoptotic activity of SUL seemed to be mediated by inhibition of intracellular accumulation of reactive oxygen species and oxidative damages. SUL exerted antioxidant potential by upregulating expression of antioxidant enzymes includingγ-glutamylcysteine ligase, NAD(P)H:quinone oxidoreductase-1, and heme oxygenase-1 via activation of NF-E2-related factor 2(Nrf2). The protective effect of SUL against Aβ25–35-induced apoptotic cell death was abolished by siRNA of Nrf2. Taken together, the results suggest that pharmacologic activation of Nrf2 signaling pathway by SUL might be a practical prevention and/or protective treatment for the management of AD.


Author(s):  
Junrui Cheng ◽  
Abdulkerim Eroglu

ABSTRACT Astaxanthin (ASX) is a naturally occurring xanthophyll carotenoid. Both in vitro and in vivo studies have shown that it is a potent antioxidant with anti-inflammatory properties. Lung cancer is the leading cause of cancer death worldwide, whereas other lung diseases such as chronic obstructive pulmonary disease, emphysema, and asthma are of high prevalence. In the past decade, mounting evidence has suggested a protective role for ASX against lung diseases. This article reviews the potential role of ASX in protecting against lung diseases, including lung cancer. It also summarizes the underlying molecular mechanisms by which ASX protects against pulmonary diseases, including regulating the nuclear factor erythroid 2–related factor/heme oxygenase-1 pathway, NF-κB signaling, mitogen-activated protein kinase signaling, Janus kinase–signal transducers and activators of transcription-3 signaling, the phosphoinositide 3-kinase/Akt pathway, and modulating immune response. Several future directions are proposed in this review. However, most in vitro and in vivo studies have used ASX at concentrations that are not achievable by humans. Also, no clinical trials have been conducted and/or reported. Thus, preclinical studies with ASX treatment within physiological concentrations as well as human studies are required to examine the health benefits of ASX with respect to lung diseases.


Sign in / Sign up

Export Citation Format

Share Document