scholarly journals Coating Performance on Exterior Oil-Heat Treated Wood

Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 225 ◽  
Author(s):  
Mojgan Nejad ◽  
Mahdi Dadbin ◽  
Paul Cooper

Thermal modification and the degree of improved properties from the treatment depend on wood species and treatment parameters. Southern yellow pine and spruce are two wood species commonly used for decking, fences, and siding in North America. This study evaluated coating performance when applied on oil-heat-treated Southern pine and spruce wood samples. Moisture content, color, and gloss changes of samples were analyzed before weathering and then after each month for the first three months and then every six months during 18 months of natural weathering exposure in Toronto, Canada. The results showed that coated heat-treated woods had lower moisture uptake, lower color change, and overall better appearance ranking than coated-untreated wood samples. Coated-spruce wood samples had lower checking and splitting, and in general, much better performance than coated-Southern pine treated samples. Notably, the average moisture content of treated spruce wood samples was significantly lower than that of Southern pine, which explains lower checking and improved coatings’ appearance.

2014 ◽  
Vol 2 ◽  
pp. 345-352 ◽  
Author(s):  
Cristina Marinela Olarescu ◽  
Mihaela Campean

Heat treatment is renowned as the most environmentally friendly process of dimensional stabilization that can be applied to wood, in order to make it suitable for outdoor uses. It also darkens wood color and improves wood durability. The intensity of heat treatment can be appreciated by means of two parameters: the color change occured in wood due to the high temperature, and the mass loss, which is a measure of the degree of thermal degradation. In order to find a mathematical correlation between these two parameters, an experimental study was conducted with four European wood species, which were heat-treated at 180°C and 200ºC, for 1-3 hours, under atmosheric pressure.The paper presents the results concerning the color changes and mass losses recorded for the heat-treated wood samples compared to untreated wood.  For all four species, the dependency between the color change and the mass loss was found to be best described by a logarithmic regression equation with R2 of 0.93 to 0.99 for the soft species (spruce, pine and lime), and R2 of 0.77 for beech. The results of this study envisage to simplify the assessment procedure of the heat treatment efficiency, by only measuring the color – a feature that is both convenient and cost-effective. 


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Vlatka Jirouš-Rajković ◽  
Josip Miklečić

Heat treatment is a method of wood modification with increasing market acceptance in Europe. The major patented European commercial heat treatment processes have trade names ThermoWood, Platowood, Retiwood, Le Bois Perdure, and Oil-Heat-Treated Wood (OHT). To what extent modification of wood affects the resistance of wood to weathering is also an important aspect for wood applications, especially where appearance is important. Unfortunately, heat-treated wood has poor resistance to weathering, and surface treatment with coatings is required for both protection and aesthetic reasons. As a substrate for coating, heat-treated wood has altered characteristics such as lower hygroscopicity and liquid water uptake and changed acidity, wettability, surface free energy, and anatomical microstructure. Various wood species, heat treatment method, treatment intensity, and treatment conditions exhibited a different extent of changes in wood properties. These altered properties could affect coating performance on heat-treated wood. The reported changes in acidity and in surface energy due to heat treatments are inconsistent with one another depending on wood species and temperature of the treatments. This paper gives an overview of the research results with regards to properties of heat-treated wood that can affect coating performance and weathering of uncoated and coated heat-treated wood.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5574-5585
Author(s):  
Intan Fajar Suri ◽  
Jong Ho Kim ◽  
Byantara Darsan Purusatama ◽  
Go Un Yang ◽  
Denni Prasetia ◽  
...  

Color changes were tested and compared for heat-treated Paulownia tomentosa and Pinus koraiensis wood treated with hot oil or hot air for further utilization of these species. Hot oil and hot air treatments were conducted at 180, 200, and 220 °C for 1, 2, and 3 h. Heat-treated wood color changes were determined using the CIE-Lab color system. Weight changes of the wood before and after heat treatment were also determined. The weight of the oil heat-treated wood increased considerably but it decreased in air heat-treated wood. The oil heat-treated samples showed a greater decrease in lightness (L*) than air heat-treated samples. A significant change in L* was observed in Paulownia tomentosa. The red/green chromaticity (a*) of both wood samples increased at 180 and 200 °C and slightly decreased at 220 °C. The yellow/blue chromaticity (b*) in both wood samples increased at 180 °C, but it rapidly decreased with increasing treatment durations at 200 and 220 °C. The overall color change (ΔE*) in both heat treatments increased with increasing temperature, being higher in Paulownia tomentosa than in Pinus koraiensis. In conclusion, oil heat treatment reduced treatment duration and was a more effective method than air heat treatment in improving wood color.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5322
Author(s):  
Idalina Domingos ◽  
Umit Ayata ◽  
José Ferreira ◽  
Luisa Cruz-Lopes ◽  
Ali Sen ◽  
...  

Chemical composition influences the calorific power of wood, mainly due to the calorific power of structural compounds and extractives. Heat treatment changes the chemical composition of treated wood. This work studies the relationship between chemical composition and calorific power improvement by heat treatment. Samples were heat-treated by the ThermoWood process ® for 1 h and 2 h. High heating value (HHV) and chemical composition; lignin, cellulose, hemicelluloses and extractives in dichloromethane, ethanol, and water were determined. The HHV of untreated wood ranged between 18.54–19.92 MJ/kg and increased with heat treatment for all the tested species. A positive linear correlation was found between HHV and Klason lignin (R2 = 0.60). A negative trend was observed for holocellulose, cellulose, and hemicelluloses content against HHV, but with low determination coefficients for linear regression. The best adjust for polysaccharides was found for hemicelluloses content. A positive correlation could be found for dichloromethane extractives (R2 = 0.04). The same was obtained in relation to ethanol extractives with R2 = 0.20. For water and total extractives, no clear positive or negative trends could be achieved. The results showed that the HHV of wood increased with heat treatment and that this increase was mainly due to the increase in lignin content.


Holzforschung ◽  
2003 ◽  
Vol 57 (3) ◽  
pp. 301-307 ◽  
Author(s):  
M. Pétrissans ◽  
P. Gérardin ◽  
I. El bakali ◽  
M. Serraj

Summary The aim of this work was to study the wettability and chemical composition of heat-treated wood. Heat treatment was performed at 240°C under inert atmosphere on four European wood species (pine, spruce, beech and poplar). Contact angle measurements before and after treatment indicated a significant increase in wood hydrophobicity. Advancing contact angles of a water drop were in all cases systematically higher for heat-treated than for untreated wood. Chemical modifications of wood after heat treatment were investigated using FTIR and 13C NMR analysis. FTIR spectra indicated little structural change which could be attributed either to carbon-carbon double bond formation or to adsorbed water. NMR spectra also revealed little chemical change except for the degree of cellulose crystallinity which was considerably higher in heat-treated wood and could explain the higher contact angles.


2014 ◽  
Vol 60 ◽  
pp. 60-65 ◽  
Author(s):  
Haci Ismail Kesik ◽  
Suleyman Korkut ◽  
Salim Hiziroglu ◽  
Hakan Sevik

2011 ◽  
Vol 197-198 ◽  
pp. 13-16
Author(s):  
Qiang Shi ◽  
Jing Hui Jiang

This study describes experiments of testing the color stability of heat-treated okan sapwood samples. Heat-treatment was done at 160°C,180°C,200°C,220°C during 4 hours, under steam. series of experiments were carried out to investigate the color stability of heat-treated okan sapwood compared to untreated wood during 100 hours xenon light irradiation. Color measurements during accelerated weathering were made at intervals throughout the test period. The results are presented in △E* and L* a* b*coordinates according to the CIE(1976)L*a*b* parameters color system. Better photo-stability in terms of color changes was recorded for heat-treated wood compared to the untreated one. The properties of heat treated wood are involved in the heat-treated wood resistanceagainst xenon light under experimental conditions.


2019 ◽  
Vol 72 ◽  
pp. 282
Author(s):  
Brent M. Fisher ◽  
Reiny W.A. Scheper

Neonectria ditissima, the causal agent of European canker, can be present in symptomless scion wood. Sanitation treatments could minimise this risk to nursery trees. In this trial, six heat treatments and five chemical treatments were tested for their effectiveness in removing this pathogen from dormant ‘Royal Gala’ wood. In July 2018, 120 symptomless inoculated shoots (three inoculations/shoot) were harvested and stored at 1oC for 3 months. Bundles of five inoculated shoots (45 cm) were placed in the centre of 24 bundles, each consisting of 25 wood pieces. Heat-treated bundles were submerged in water (45oC for 45 min or 50oC for 15 min), or wrapped in moist cloth, vacuum sealed inside plastic then submerged for 3–6 h at the same temperatures. Chemical-treated bundles were submerged for 16 h at room temperature. Treatments were compared with untreated wood. After surface sterilising, isolation of N. ditissima from inoculated wounds was attempted on apple-sap amended water agar. All wounds from the untreated wood and from the chemical-treated wood yielded the pathogen. However, N. ditissima was not isolated from wounds that had been heat treated. Therefore, heat treatments that do not affect scion wood viability may prove an effective tool to remove European canker from nursery material.


2020 ◽  
Vol 70 (4) ◽  
pp. 469-475
Author(s):  
Katie M. Ohno ◽  
Amy B. Bishell ◽  
Glen R. Stanosz

Abstract Living organisms require copper for several cellular processes. Yet intracellular concentrations of copper must be regulated to avoid toxicity. Not much is known about mechanisms of copper regulation in wood decay fungi. However, one putative annotation for a copper homeostasis CutC gene (FIBRA_00129), found in other brown-rot wood decay fungi, has been annotated in Fibroporia radiculosa. The aim of this study was to evaluate wood mass loss and differential expression of FIBRA_00129 during initial decay of untreated and copper-treated wood by two copper-tolerant F. radiculosa isolates (FP-90848-T and L-9414-SP) compared with copper-sensitive Gloeophyllum trabeum. Untreated southern pine (Pinus spp.) and ammoniacal copper citrate treated southern pine at three concentrations (0.6%, 1.2%, and 2.4%) were used in a 4-week-long standard decay test. Results showed G. trabeum was unable to decay copper-treated wood while both F. radiculosa isolates successfully decayed southern pine at all copper concentrations. G. trabeum and F. radiculosa L-9414-SP showed no detectable FIBRA_00129 expression over the course of this study. F. radiculosa FP-90848-T showed greater FIBRA_00129 downregulation on copper-treated wood than on untreated wood (P = 0.003). Additionally, there was greater FIBRA_00129 downregulation in F. radiculosa FP-90848-T at week 3 compared with other weeks (P = 0.015). Future studies are needed to further evaluate FIBRA_00129 during the decay process to determine its potential role in copper-tolerance.


Sign in / Sign up

Export Citation Format

Share Document