scholarly journals Mechanical Properties of Tailings Sample with Different Moisture Contents under Dry and Wet Cycles

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Ling-ling Wu ◽  
Yao-hui Guo ◽  
Kai-wen Tong ◽  
Lin Hu ◽  
Qing Yu ◽  
...  

Due to precipitation infiltration, evaporation of water, and rising and falling of the wetting line, the tailings are in a cyclical moisture absorption-dehumidification state for a long time. The mechanism of change of physical and mechanical properties of tailings during the dry and wet cycle is related to the safe operation of the entire tailings dam. In order to explore the variation of the mechanical behavior of tailings in a tailings pond in Hunan Province with the number of dry and wet cycles under different initial water content conditions, the tailings sand samples with moisture content of 6.10%, 10.40%, 14.00%, 18.20%, and 21.00% were subjected to 0 to 6 times of moisture absorption and desorption cycles at natural dry density, and then, the stress-strain relationship curves, pore water pressure, failure mode, and shear dilatancy of these samples were tested by triaxial consolidation undrained shear test. The test results showed that when the number of moisture absorption and desorption cycles increases, the strength of the tailings sand sample was weakened, and the strength tended to be stable after 3∼5 cycles. In addition, the stress-strain curve of the sample with lower water content dropped sharply. However, the pore pressure of tailings sand samples with different water contents under different wet and dry cycles all showed a phenomenon of increasing first and then decreasing in general.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Cheng Song ◽  
Ligong Yang ◽  
Wei Xia ◽  
Wendong Ji ◽  
Yuting Zhang

Expansive soil has the property of water swelling, which is related not only to the hydrophilic mineral composition of soil particles and the microstructure of soil, but also to the initial moisture content, dry density, and overburden condition of soil. Based on the typical expansive soil in a certain area, the samples were sampled and remodeled at the site. Extensive experimental tests were conducted to investigate the relationship between the hygroscopic expansion rate and the water content of the expansive soil under different initial moisture content, dry density, and free load. The results showed that, under the condition of natural initial water content and dry density, although the hygroscopic expansion rate of the medium expansive soil was nonlinear with the subsequent water content, in the range of large water content (within about 50%), the expansive soil swelled linearly. There was a linear relationship between the rate and the water content. With the increase of the initial water content, the hygroscopic expansion rate and expansion rate of the expansive soil decreased. With the increase of the dry density, the hygroscopic expansion rate and the expansion rate of the expansive soil increased. The water absorption performance did not decrease, and the soil continued to maintain the previous moisture absorption rate and expansion rate after the soil reached saturation, while after the water content reached 1.5∼2.0 times the saturated water content, the soil moisture absorption expansion rate gradually decreased until it finally stabilized. The slope k of the expansion rate increased with the initial dry density and decreased with the initial moisture content. As dry density was increased, the slope k was increased at an increased rate. Moreover, as the initial moisture content was decreased, the slope k was increased at an increased rate.


2013 ◽  
Vol 19 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Zhiqing Li ◽  
Chuan Tang ◽  
Ruilin Hu ◽  
Yingxin Zhou

According to Mengzi expansive soil, consolidated drained tests and undrained tests are carried on under saturated and remoulded conditions. The stress-strain characteristics of saturated soil are researched systematically under different confining pressure, initial dry density, initial water content, shearing rate and drainage condition. The inherent unity of diversity of shearing strength for the same samples measured by different experimental methods is indicated according to the normalization of critical state test results. And the failure lines in p ‘- q - ν space of remoulded saturated expansive soil under consolidated drained and undrained conditions are attained. The hyperbolic curve model can fit well the weak hardening stress-strain curves and the exponential curve model can fit the weak softening stress-strain curves. The test results can provide technical parameters and theoretical help for shearing strength variation of slope during rainfall and strength state of soil structure in normal water level.


2002 ◽  
Vol 39 (6) ◽  
pp. 1341-1357 ◽  
Author(s):  
Jean-Marie Fleureau ◽  
Jean-Claude Verbrugge ◽  
Pedro J Huergo ◽  
António Gomes Correia ◽  
Siba Kheirbek-Saoud

A relatively large number of drying and wetting tests have been performed on clayey soils compacted at the standard or modified Proctor optimum water content and maximum density and compared with tests on normally consolidated or overconsolidated soils. The results show that drying and wetting paths on compacted soils are fairly linear and reversible in the void ratio or water content versus negative pore-water pressure planes. On the wet side of the optimum, the wetting paths are independent of the compaction water content and can be approached by compaction tests with measurement of the negative pore-water pressure. Correlations have been established between the liquid limit of the soils and such properties as the optimum water content and negative pore-water pressure, the maximum dry density, and the swelling or drying index. Although based on a limited number of tests, these correlations provide a fairly good basis to model the drying–wetting paths when all the necessary data are not available.Key words: compaction, unsaturated soils, clays, drying, wetting, Proctor conditions.


2020 ◽  
Vol 205 ◽  
pp. 10005
Author(s):  
Tomonori Sakita ◽  
Hideo Komine ◽  
Atsuo Yamada ◽  
Hailong Wang ◽  
Shigeru Goto

Sand-bentonite mixtures with bentonite content of 10-30% had been planned to handle low-level radioactive waste in Japan, because of its low permeability. Hydraulic conductivity of sand–bentonite mixture depends on the bentonite type, bentonite content, initial water content, and other factors. Given this background, falling head permeability tests were conducted on sand–bentonite mixture by varying the compaction energy for specimen preparation, initial water content (10–20%), and bentonite content (15– 30%). For these tests, the hydraulic gradient of 25-500 was set. Consequently, the hydraulic conductivities were 10-8 – 10-13 m/s for all tested conditions. Correlation between the hydraulic conductivity and the effective montmorillonite dry density (montmorillonite mass divided by the sum of montmorillonite, air, water volume), which is often used to correlate the hydraulic conductivity of bentonite, was found. Correlation was also found between the hydraulic conductivity and a new index designated as the effective montmorillonite wet density (sum of montmorillonite and water mass / sum of montmorillonite, air, water volume). Effective montmorillonite wet density reveals differences in the specimen structural distribution through consideration of the initial water content.


1994 ◽  
Vol 31 (4) ◽  
pp. 478-490 ◽  
Author(s):  
Hideo Komine ◽  
Nobuhide Ogata

Compacted bentonites are attracting greater attention as back-filling (buffer) materials for repositories of high-level nuclear waste. However, since there are few studies about the swelling characteristics of compacted bentonites, it is first necessary to clarify the fundamental swelling characteristics in detail. For this purpose, various laboratory tests on the swelling deformation and swelling pressure of compacted bentonites were performed and the results analyzed. The following conclusions were drawn from the study. (i) The curve of swelling deformation versus time is strongly dependent on the initial dry density, vertical pressure, and initial water content. The maximum swelling deformation, however, is almost independent of initial water content, and the maximum swelling deformation increases in proportion to the initial dry density, (ii) The maximum swelling pressure increases exponentially with increasing initial dry density, whereas the maximum swelling pressure is almost independent of initial water content. (iii) The swelling mechanism of compacted bentonite was considered on the basis of the swelling behavior of swelling clay particles such as montmorillonite. Furthermore, a model of the swelling characteristics and a new parameter (swelling volumetric strain of montmorillonite), which were able to evaluate the swelling characteristics of compacted bentonite, were proposed. Key words : bentonite, laboratory test, nuclear waste disposal, swelling deformation, swelling pressure.


2013 ◽  
Vol 477-478 ◽  
pp. 472-475
Author(s):  
Ling Cao ◽  
Xin Zhe Li

Based on the unsaturated soil ponding water infiltration test in laboratory, the influences of cohesive particles content, dry density and initial water content on infiltration rate are analyzed. Soil infiltration rate decreased with the increase of cohesive particles content and dry density; with the decrease of initial water content at low dry density, and with the increase of initial water content at high dry density.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yanzhao Zhang ◽  
Shuangying Zuo ◽  
Rita Yi Man Li ◽  
Yunchuan Mo ◽  
Guosheng Yang ◽  
...  

Abstract This study investigated the macroscopic physical and mechanical properties of Guiyang red clay during surcharge loading, lateral excavation and lateral unloading with axial loading, and clarified the failure mechanism of microstructure before and after shear under different stress paths of CTC, RTC and TC. Consolidated undrained triaxial shear permeability, SEM scanning, XRF fluorescence spectrum analysis and XRD diffraction tests were conducted to simulate the actual engineering conditions. The stress–strain curve, shear strength, pore water pressure variation rule and macroscopic failure mode of soil samples under different stress paths were analysed. In addition, Image Pro Plus 6.0 and PCAS were used to study the relationship between the macro mechanical properties and micro microstructure failure under different stress paths. The stress–strain curves from CTC, RTC and TC in CU tests were different, with the peak values of shear stress under the three stress paths being P-increasing, equal P-path and P-decreasing path. Moreover, the internal friction angle and cohesion of the increasing P path were higher than those of equal P path and decreasing P path, hence, the influence of stress paths on the cohesion is greater than that of internal friction angle. The pore water pressure is strongly dependent on the stress path, and the variation characteristics of pore water pressure are consistent with the change in the law of the stress–strain curve. Under the same confining pressure in the P-increasing path, the shear failure zone runs through the whole soil sample, and the shear failure zone is significant, whereas under the condition of the P-reducing path, the shear failure angle of soil sample is about 65°, 55° and 45°, and in the equal P path, the soil sample is dominated by the confining pressure, with no obvious microcrack on the surface of the soil sample. The difference is that the distribution of pores in the path of increasing P and equal P is directional, and the anisotropy rate is small, while the distribution of pores in soil samples with shear failure and before shear is random and the anisotropy rate is high.


2012 ◽  
Vol 212-213 ◽  
pp. 108-112 ◽  
Author(s):  
Wen Sheng Dong ◽  
Xiu Fang Jiang ◽  
Xian Feng He ◽  
Ying Ying Zai

Aim to the high sandy river “ripping up the riverbed” phenomenon, by experiment, analyzing the relationship between clay dry density, water content, plasticity index and its shear strength, and its mechanical properties. Create the conditions for studying clay mechanical strength and the critical condition of “bottom tearing scour”.


2007 ◽  
Vol 293 (4) ◽  
pp. H2328-H2334 ◽  
Author(s):  
Xiaomei Guo ◽  
Yoram Lanir ◽  
Ghassan S. Kassab

Some pathological conditions may affect osmolarity, which can impact cell, tissue, and organ volume. The hypothesis of this study is that changes in osmolarity affect the zero-stress state and mechanical properties of the aorta. To test this hypothesis, a segment of mouse abdominal aorta was cannulated in vivo and mechanically distended by perfusion of physiological salt (NaCl) solutions with graded osmolarities from 145 to 562 mosM. The mechanical (circumferential stress, strain, and elastic modulus) and morphological (wall thickness and wall area) parameters in the loaded state were determined. To determine the osmolarity-induced changes of zero-stress state, the opening angle was observed by immersion of the sectors of mouse, rat, and pig thoracic aorta in NaCl solution with different osmolarities. Wall volume and tissue water content of the rings were also recorded at different osmolarities. Our results show that acute aortic swelling due to low osmolarity leads to an increase in wall thickness and area, a change in the stress-strain relationship, and an increase in the elastic modulus (stiffness) in mouse aorta. The opening angle, wall volume, and water content decreased significantly with increase in osmolarity. These findings suggest that acute aortic swelling and shrinking result in immediate mechanical changes in the aorta. Osmotic pressure-induced changes in the zero-stress state may serve to regulate mechanical homeostasis.


Sign in / Sign up

Export Citation Format

Share Document