scholarly journals Current Advances in Red Blood Cell Generation Using Stem Cells from Diverse Sources

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yoojin Seo ◽  
Kyung-Hwa Shin ◽  
Hyung Hoi Kim ◽  
Hyung-Sik Kim

Blood transfusions hold an indispensable part in the modern healthcare system. Up to date, the blood supply is largely dependent on donations. Unfortunately, collecting the clinical-grade blood products has become a challenging mission due to accelerated population aging, which not only increases the need for blood transfusions but also decreases the number of healthy donors. Moreover, individuals with severe hematological abnormalities or rare blood phenotypes need alternative therapeutic approaches instead of conventional blood transfusion. In these aspects, the concept ofin vitro/ex vivoproduction of blood cells has been emerging and many attempts have been focused on manufacturing mature erythrocytes, so-called red blood cells (RBCs), the most common and important component among the blood derivatives. In this review, we provide a general overview regarding the current strategies for generating RBCs from various stem cell sources including pluripotent stem cells (PSCs) as well as circulating blood stem cells and the remaining challenges that must be overcome prior to their practical application.

2019 ◽  
Vol 3 (3) ◽  
pp. 257-260 ◽  
Author(s):  
Waseem Qasim

Abstract The rapid evolution of tools for genome editing has created a dizzying array of possibilities for novel therapeutic strategies, even though to date only a handful of clinical applications have been realised. Proof-of-concept demonstrations of targeted genome modification in vitro and in small animal models of inherited single gene disorders have to be translated into effective therapies. Interest has naturally gravitated towards opportunities for collection, ex vivo modification and return of blood, immune and stem cells. Initial applications designed to modify T cells to protect against HIV or to confer potent anti-leukaemic effects have reached clinical phase, and further applications to modify blood stem cells are close to being applied. There are generic considerations of safety, on- and off-target effects and possible genotoxicity as well as issues relating to more sophisticated systemic approaches where niche occupation and host immunity become relevant. Such issues will be likely addressed over time, with carefully designed clinical trials required to determine therapeutic risks and benefits.


2020 ◽  
Vol 1 (2) ◽  
pp. 1-9
Author(s):  
Bela Balint ◽  
Mirjana Pavlović ◽  
Milena Todorovic

Hematopoietic stem cells (SCs) are responsible for the production and replacement (proliferation) of an extensive quantity of functionally competent blood cells (differentiation) during the entire life, while simultaneously maintaining the ability to reproduce themselves (self-renewal). A complex network of interactive substances and factors organize and protect the survival, maturation and multiplication of SCs. Hemobiological events in the bone marrow (BM) are synchronized and balanced by the extracellular matrix and microenvironment provided by stromal cells. These cells-including macrophages, fibroblasts, dendritic, endothelial and other cells-stimulate SCs by producing specific hematopoietic growth factors. Other cytokines secreted by stromal cells regulate the adhesion molecules positioned on SCs, allowing them to remain in the BM or migrate to an area where the respective cell type is needed. Thus, hematopoietic SCs could be defined as cells with high proliferative capacity and extensive potential to differentiate into all blood cells or some somatic cell types (SC plasticity)-such as cardiomyocytes, myocytes, osteocytes, chondrocytes, hepatocytes, and even endothelial cells. Recent increasing clinical use of cell-mediated therapeutic approaches has resulted in increased needs for SCs, but in superior operating procedures during their ex vivo manipulations. The aim of cell harvestings is to obtain a higher SC yield and improved viability or clonogenicity. The goal of optimized cryoinvestigation protocols is to get a minimized cell damages (cryoinjury). Despite the fact that different SC collection protocols and cell freezing practice are already in routine use, a lot of questions related to the optimal SC ex vivo manipulations are still unresolved. This review summarizes fundamental knowledge and methodological approaches, and recapitulates data enabling progress on constantly evolving research frontiers in the SC area. The studies (including also our investigations) that evaluated the efficiency and safety of SC-treatment (transplants and regenerative medicine) will be also concisely presented.


2017 ◽  
Vol 70 (suppl. 1) ◽  
pp. 41-45
Author(s):  
Bela Balint ◽  
Milena Todorovic ◽  
Ivana Urosevic ◽  
Mirjana Pavlovic

Stem cells could be defined as cells capable for self-renewal with high proliferative capacity and extensive potential to differentiate into blood cells or some somatic cell types - ?plasticity? due to ?trans-differentiation? - such as osteocytes, chondrocytes, hepatocytes, myocytes, cardiomyocytes and even endothelial cells. Recent increasing clinical use of various cell-mediated therapeutic approaches has resulted in amplified needs for both stem cells and operating procedures to get a minimized cell damages during collection, purification and cryopreservation. The aim of cell harvesting procedures is to obtain the best stem cells yield, high purity and good viability/clonogenicity. The goal of optimized cryoinvestigation protocols is to minimize cell injuries during the freeze/thaw process (cryoinjury). Despite the fact that different stem cells collection protocols and cell freezing practice are already in routine use, a lot of questions related to the optimal blood stem cells harvesting, purification and cryopreservation are still unresolved.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Johnny E. Moore ◽  
Davide Schiroli ◽  
C. B. Tara Moore

Corneal cross-linking is nowadays the most used strategy for the treatment of keratoconus and recently it has been exploited for an increasing number of different corneal pathologies, from other ectatic disorders to keratitis. The safety of this technique has been widely assessed, but clinical complications still occur. The potential effects of cross-linking treatment upon the limbus are incompletely understood; it is important therefore to investigate the effect of UV exposure upon the limbal niche, particularly as UV is known to be mutagenic to cellular DNA and the limbus is where ocular surface tumors can develop. The risk of early induction of ocular surface cancer is undoubtedly rare and has to date not been published other than in one case after cross-linking. Nevertheless it is important to further assess, understand, and reduce where possible any potential risk. The aim of this review is to summarize all the reported cases of a pathological consequence for the limbal cells, possibly induced by cross-linking UV exposure, the studies donein vitroorex vivo, the theoretical bases for the risks due to UV exposure, and which aspects of the clinical treatment may produce higher risk, along with what possible mechanisms could be utilized to protect the limbus and the delicate stem cells present within it.


2018 ◽  
Vol 5 (1) ◽  
pp. 47-52
Author(s):  
Mohamed Morsy ◽  
Mohammad Ayaz Hossain ◽  
Atul Bagul

Background: Normothermic Machine Perfusion (NMP) has been established in the field of solid organ transplantation for both liver and kidney allografts. The ability to perfuse organs at body temperature enables viability assessment as well as optimisation prior to implantation. Discussion: A recent in vitro report of the use of Mesenchymal Stem Cells (MSCs) in the use of a normothermic lung perfusion circuit has raised the possibility of their use in solid organ transplantation. The aim of this short review is to outline the potential uses of bone marrow derived MSCs for their use in renal allograft ex vivo NMP. An overview is provided of current literature of NMP as well as theorised uses for MSCs.


2021 ◽  
Author(s):  
Shiva Pratap Singh ◽  
Suresh Dinkar Kharche ◽  
Manisha Pathak ◽  
Ravi Ranjan ◽  
Yogesh Kumar Soni ◽  
...  

Abstract The milieu of testicular germline stem cells (mGSCs) is characterized as low oxygen (O2) environment, whereas, there in-vitro expansion is typically performed under normoxia (20-21% O2). Here, we evaluated and compared the culture and multilineage differentiation characteristics of enriched (through differential platting and percoll density centrifugation) caprine mGSCs (cmGSCs) under hypoxic (5% O2) and normoxic (21% O2) culture conditions. For this, in addition to growth characteristics and population-doubling time (PDT); viability, proliferation, senescence, and expression of key-markers of adhesion (β-integrin and E-Cadherin) and stemness (OCT-4, THY-1 and UCHL-1) were evaluated and compared under normoxia and hypoxia. Moreover, the extent of multilineage differentiation (neurogenic, adipogenic, and chondrogenic differentiation) was assessed. The survival, viability and proliferation were significantly promoted and PDT was reduced (p < 0.05), thus yielding a higher number of viable cells with larger colonies under hypoxia. Furthermore, expression of stemness and adhesion markers was distinctly increased under lowered O2 condition. Conversely, the presence of differentiated regions and expression of differentiation specific key genes [C/EBPα (adipogenic), nestin and β-tubulin (neurogenic), and COL2A1 (chondrogenic)] were significantly (p < 0.05) reduced under hypoxic conditions. These data demonstrate that culturing cmGSCs under hypoxia augments the growth characteristics, and stemness but not the multilineage differentiation potential of cmGSCs as compared with normoxia. These data are important for the development of robust methodologies for ex-vivo expansion and lineage-committed differentiation of cmGSCs for clinical applications.


Sign in / Sign up

Export Citation Format

Share Document