scholarly journals Experimental Studies on the Mechanical Properties of Loess Stabilized with Sodium Carboxymethyl Cellulose

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Hongwang Ma ◽  
Qi Ma

This research investigated the use of sodium carboxymethyl cellulose (CMC) as a reinforcement to improve mechanical properties of loess soil found in northwestern China. The mechanical properties of loess were determined by unconfined compressive strength and split tensile strength tests. Three different contents of CMC were adopted: 0.5%, 1.0%, and 1.5%. The results showed that utilizing CMC reduced the maximum dry density of the loess. The compressive strength, tensile strength, and Young’s modulus are enough to construct low-rise buildings when the CMC content exceeds 1.0%, based on existing standards. This research thus provides a prospective sustainability method for loess stabilization.

2021 ◽  
Vol 7 (2) ◽  
pp. 226-235
Author(s):  
Faisal K. Abdulhussein ◽  
Zahraa F. Jawad ◽  
Qais J. Frayah ◽  
ِAwham J. Salman

This paper investigates the effect of nano-papyrus cane ash as an additive on concretes’ mechanical and physical properties. Three types of concrete mixtures, 1:2:4, 1:1.5:3, and 1:1:2 were prepared for each mixture, nano-papyrus ash was added in five different dosages of 0.75, 1.5, 3, 4.5, and 6% by weight of cement; therefore, eighteen mixes would be studied in this work. Physical properties represented by dry density and slump were also measured for each mix. Moreover, to evaluate the mechanical properties development split tensile strength and compressive strength were obtained at age (7 and 28). Results manifested that the adding of nano ash developed the compressive strength and split tensile strength of concrete and the maximum enhancement recognized in the mixes with a content of 4.5% nano-papyrus in each studied mixture in this work. The slump test results indicated that the workability of concrete increased with adding nano-papyrus ash gradually with increasing nanoparticles' content. As well as, dry density was significant increased with nano-papyrus ratio; greater values were recorded in mixtures with 1.5-4.5% content of nano-papyrus. When comparing the concrete mixes used, it was found that the best results were obtained with 1:1:2 mixtures. This remarkable improvement in concrete properties considers the nano-papyrus is considered a cement economical and useful replacement for traditional construction material. Doi: 10.28991/cej-2021-03091649 Full Text: PDF


2018 ◽  
Vol 7 (2.23) ◽  
pp. 443
Author(s):  
USHAKRANTI J ◽  
SRINIVASU K ◽  
NAGA SAI

Currently situation, improvement of infrastructure has created an excessive demand for herbal sand, which makes it greater expensive and leads to environmental imbalances. The utilization of suitable sustainable choice materials proves that it is the most efficacious choice to traditional concrete materials and can take care of the surrounding environment. Copper slag is an industrial byproduct of copper production. Copper slag is a high-gravity glassy granular material. This paper reports some experimental studies on the outcome of partially changed sand from impact of copper slag on the mechanical houses of concrete. M30 concrete adopts copper slag plan and partly substitutes high-quality combination fines by means of 0%, 10%, 20%, 30%, 40%, 50%, 60%, 80% and 100%. The mechanical properties of concrete measured in the laboratory encompass compressive strength, split tensile strength and bending tensile strength. The have an impact on of partly replacing the quality aggregates with copper slag on the compressive strength, the cut up tensile power of the cylinder and the bending power of the prism has been evaluated. Water absorption assessments have been also conducted to report the impact of copper slag on the absorption price of concrete. Test results affords that it is feasible to utilize copper slag as best aggregate in concrete. 


2019 ◽  
Vol 26 (1) ◽  
pp. 33-40
Author(s):  
Muyasser M. Jomaa’h ◽  
Baraa Thaer Kamil ◽  
Omer S. Baghabra

The light of the world’s technological development in the construction field and the continuous need to apply of a high-efficiency building materials because old methods is no longer is used after the advent of the solutions that characterized by fast applications and maximum protection in addition to reducing costs and increase the sustainability of the establishment and its design age. The lightweights of various installations are an urgent need to decrease the dead loads. Therefore, this study is specie locally focus on replacing the normal coarse aggregate with lightweight coarse aggregate (claystone (bonza), rubber, thermostone and polystyrene) in various volumetric ratios of (25, 50 and 75) % in addition to a preparation reference mix. For the purpose identifying and studying the important specifications the new concrete which contributes to the self-load reduction of the concrete by reducing the total density of the mixture, were prepared models of cylinders and standard prisms, to evaluate the compressive strength and the splitting tensile strength respectively, Also the modulus of rupture and the unit weight, where carried out. The results tests indicated that a drop in the mechanical properties of the concrete with increasing the lightweight coarse aggregate , mechanical properties values : compressive strength , rupture modulus, splitting tensile strength and flexural strength were between (10.66-28.99) MPa (1.122-3.372) MPa, (3.606-6.83) MPa and (20.101-25.874)MPa compared with a reference mixes (38.44MPa), (3.969MPa), (10.476MPa) and (26.940)MPa respectively for mixes of (25, 50 and75)% with different light coarse aggregate , also the values of an oven dry density were between (1665.5-2287.58)kg/m3 compared with reference mixes (2426.41kg/m³). The best concrete mix was (M7, M10) of low density (1598.4 kg/m3) and (1580.4) kg /m3 and the compression strength within the permissible limits (15.47) MPa.


2015 ◽  
Vol 10 (4) ◽  
pp. 155892501501000
Author(s):  
Ramesh Kanagavel ◽  
K. Arunachalam

Mechanical properties of quaternary blending cement concrete reinforced with hybrid fibers are evaluated in this experimental study. The steel fibers were added at volume fractions of 0.5%, 1%, and 1.5 % and polypropylene fibers were added at 0.25% and 0.5% by weight of cementitious materials in the concrete mix individually and in hybrid form to determine the compressive strength, split tensile strength, flexural strength and impact resistance for all the mixes. The experimental results revealed that fiber addition improves the mechanical properties and also the ductility and energy absorption of the concrete. The results also demonstrate that the hybrid steel – polypropylene fiber reinforced concrete performs better in compressive strength, split tensile strength, flexural strength and impact resistance than mono steel and mono polypropylene fiber reinforced concrete.


2018 ◽  
Vol 195 ◽  
pp. 01008
Author(s):  
Puput Risdanareni ◽  
Januarti Jaya Ekaputri ◽  
Ike Maulidiyawati ◽  
Poppy Puspitasari

This paper investigates the effect of sintered fly ash lightweight aggregate as coarse aggregate substitution on the mechanical properties of concrete. The lightweight aggregate (LWA) was produced using the cold bonded method and then sintered at a temperature of 900°C. An alkaliactivated system was applied as a binding agent of the LWA. Fly ash was used as precursor while sodium hydroxide and sodium silicate were employed as alkali activators. Three variations of the LWA dosage were performed, which were 0%, 50%, and 100 % of the volume of coarse aggregate in the concrete mixture. The mechanical properties of the concrete investigated in this research are the compressive strength and split tensile strength. The result showed that the mechanical properties of the concrete slightly decrease along with the increased dosage of the LWA in the mixture. However, employing sintered fly ash the LWA is proven as an effective solution in reducing the concrete density without sacrificing its strength.


Author(s):  
Aman Sharma

Abstract: The wollastonite mineral are the main source of solid-state reaction from limestone and silica sand. Wollastonite is used as replacement of both sand and cement depending on size of wollastonite. Present study will provide better understanding of mechanical and durability properties of concrete in which cement is partially replaced with wollastonite. The present paper would contribute to the efforts being made in the field of concrete technology towards development of concretes possessing good strength and durability properties along with economic and ecological advantage. Based on the study, valuable advice will be given for concrete structures. It was found that with increase in amount of wollastonite, in concrete with workability of concrete decreases. It was also found that initial day’s strength is less for wollastonite concrete compare to control mix, but as the age increases they show good improvement in strength due to pozzalanic reaction. Optimum dosage is observed to be 15% WP which shows more strength compared to control mix. Keywords: wollastonite mineral, workability, compressive strength, split tensile strength.


Author(s):  
C. Mounika

Abstract: The main aim of this project is to evaluate mechanical properties of interlocking bricks using coir fiber powder as a substitute of cement and rubber tire waste as a substitute of fine aggregate (sand) with varying percentages of 0%, 1%, 2% & 3% and 0%, 5%, 10% & 15% in concrete and to help in solving environmental problem produced from disposing of waste tires and coir husk partially. Additionally fly ash was also added with varying percentages of 5%, 10% and 15% as a substitute to cement in a concrete mix. Several laboratory tests such as compressive strength test, flexural strength test, split tensile strength test, water absorption test and density of concrete etc., were conducted on hardened concrete specimen to achieve the optimum usage of crumb rubber tire waste and coir fiber powder in mix proportion of concrete. It is found that the maximum compressive strength value of coir fiber based crumb rubber interlocking brick was obtained at 1%CF + 5%FA + 5%CR, flexural strength value and split tensile strength value of coir fiber based crumb rubber concrete block was obtained at 1%CF + 5%FA + 5%CR. From the final conclusion or outcome of the project, optimum usage of coir fiber powder is 3% and crumb rubber is 5%. Keywords: coir fiber powder, crumb rubber tire waste, mechanical properties, interlocking bricks & optimum usage.


In an attempt to renovate waste product into constructive material for the building purpose, this research considered the use of corn cob ash (CCA) as a partial replacement of cement. Hence, in this research, we have proposed an eco-friendly solution by investigating the utilization of corncob ash with 0, 5, 10 and 15% replacement for cement in M30 grade of concrete Mechanical Properties such as compressive strength, Split tensile strength and Flexural strength at 7,14,28 days are examined in laboratory. The results reveal that Corn Cob Ash can be used as a partial replacement for cement which in turn reduces the emission of greenhouse gases.


This study presents the experimental investigation carried out to study the mechanical properties of concrete with and without the addition of fibres to it.d Concrete is the most consumed material in the world which has the property of strong in compression and weak in tension. Also plain concrete possess very limited ductility and little resistance to cracking. Hence fibres are introduced in the concrete to improve the tensile strength & brittleness of the concrete. These fibres which are closely spaced and dispersed uniformly in the concrete arrest the micro and macro cracks and improve the tensile strength of concrete. Concrete admixed with such fibres are known as Fibre Reinforced Concrete. The combination of two (or) more fibres called as Hybridization is carried out in this work. M25 grade concrete is designed as per IS 10262:2009 with the volume fraction of 0-1.5%. The workability of the concrete is affected due to the addition of fibres and hence super plasticizers are added to the concrete. The fibres considered for the study are (i) Crimped Steel Fibre (0-1.5%) and (ii) Shortcut Glass Fibre (0.1-0.2%). The behaviour of the hybrid fibre reinforced concrete is investigated by conducting compressive strength test on cube specimen of size 150mmx150mmx150mm and split tensile strength test on cylinder specimen of size 150mm diameter and 300mm height. From the experimental results, the optimum fibre combinations for maximum compressive strength and spilt tensile strength of concrete are identified.


2020 ◽  
Vol 398 ◽  
pp. 83-89
Author(s):  
Dalia Adil Rasool ◽  
Mais A. Abdulkarem ◽  
Mohammed Ali Abdulrehman

Iron Filings (IF) and brick powder (BP) waste materials taken from steel workshops and factories and demolition of buildings respectively .create serious environmental problems ,so the main aim of this paper is to estimate the potency of employing the mixing of waste materials (Iron Filings and brick-powder) altogether as partly replace of cement and the fine-aggregate respectively in the composition of concrete which were mixed with a ratio of (1:2:4) and (W/C) ratio equal to (0.45). In this study the cement has been replaced by Iron Filings in the proportion of ( 10%, 20%,30 %and 40%) and fine aggregate replaced by waste brick powder in the proportion of (0%,5%,10%, and 15%) by weight of concrete mix simultaneously. In this paper, the split tensile strength , the compressive strength and flexural strength of the concretes mixtures were specified. The main results of this paper appeared that the (cement and sand) can be partially replaced by ( Iron Filings and brick-powder) in the concrete mixture and it has achieved the optimum percentage of replacement by (30%IF+10%BP). So the utilization of solid waste is required in an attempt to equilibrate between the construction request and environmental sustainability and as well as saving landfill space.


Sign in / Sign up

Export Citation Format

Share Document