scholarly journals Dynamical System Perspective of Cosmological Models Minimally Coupled with Scalar Field

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
S. Surendra Singh ◽  
Chingtham Sonia

The stability criteria for the dynamical system of a homogeneous and isotropic cosmological model are investigated with the interaction of a scalar field in the presence of a perfect fluid. In this paper, we depict the dynamical system perspective to study qualitatively the scalar field cosmology under two special cases, with and without potential. In the absence of potential, we get a two-dimensional dynamical system, and we study the analytical as well as geometrical behavior. For the dynamical system with potential, we analyze different potential forms: simple exponential potential form (Vϕ=Voe−λϕ), double exponential potential form Vϕ=Voexp−Aexp2αϕ, and inverse power law potential form (Vϕ=Voϕ−α). We generate an autonomous system of ordinary differential equations (ASODE) for each case by introducing new dimensionless variables and obtain respective fixed points. We also analyze the type, nature, and stability of the fixed points and how their behavior reflects towards the cosmological scenarios. Throughout the whole work, the investigation of this model has shown us the deep connection between these theories and cosmic acceleration phenomena. The phase plots of the system at different conditions and different values of γ have been analyzed in detail, and their geometrical interpretations have been studied. The perturbation plots of the dynamical system have been analyzed with emphasis on our analytical findings. We have evaluated the total energy density (Ωϕ) at the fixed points and also found out the suitable range of γ and λ for a stable model.

2018 ◽  
Vol 15 (12) ◽  
pp. 1850212 ◽  
Author(s):  
K. Kleidis ◽  
V. K. Oikonomou

In this paper we will study the cosmological dynamical system of an [Formula: see text] gravity in the presence of a canonical scalar field [Formula: see text] with an exponential potential by constructing the dynamical system in a way that it is rendered autonomous. This feature is controlled by a single variable [Formula: see text], which when it is constant, the dynamical system is autonomous. We focus on the [Formula: see text] case which, as we demonstrate by using a numerical analysis approach, leads to an unstable de Sitter attractor, which occurs after [Formula: see text] [Formula: see text]-foldings. This instability can be viewed as a graceful exit from inflation, which is inherent to the dynamics of de Sitter attractors.


2017 ◽  
Vol 26 (02) ◽  
pp. 1750012 ◽  
Author(s):  
B. Pourhassan ◽  
J. Naji

In this paper, we consider tachyonic matter in spatially flat Friedmann–Robertson–Walker (FRW) universe, and obtain behavior of some important cosmological parameters for two special cases of potentials. First, we assume the exponential potential and then consider hyperbolic cosine type potential. In both cases, we obtain behavior of the Hubble, deceleration and EoS parameters. Comparison with observational data suggest the model with hyperbolic cosine type scalar field potentials has good model to describe universe.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Kourosh Nozari ◽  
Narges Rashidi

We consider a hybrid scalar field which is nonminimally coupled to the matter and models a chameleon cosmology. By introducing an effective potential, we study the dependence of the effective potential's minimum and hybrid chameleon field's masses on the local matter density. In a dynamical system technique, we analyze the phase space of this two-field chameleon model, find its fixed points and study their stability. We show that the hybrid chameleon domination solution is a stable attractor and the universe in this setup experiences a phantom divide crossing.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
R. Ben Alì Zinati ◽  
A. Codello ◽  
O. Zanusso

Abstract We study renormalization group multicritical fixed points in the ϵ-expansion of scalar field theories characterized by the symmetry of the (hyper)cubic point group HN. After reviewing the algebra of HN-invariant polynomials and arguing that there can be an entire family of multicritical (hyper)cubic solutions with ϕ2n interactions in $$ d=\frac{2n}{n-1}-\epsilon $$ d = 2 n n − 1 − ϵ dimensions, we use the general multicomponent beta functionals formalism to study the special cases d = 3 − ϵ and $$ d=\frac{8}{3}-\epsilon $$ d = 8 3 − ϵ , deriving explicitly the beta functions describing the flow of three- and four-critical (hyper)cubic models. We perform a study of their fixed points, critical exponents and quadratic deformations for various values of N, including the limit N = 0, that was reported in another paper in relation to the randomly diluted single-spin models, and an analysis of the large N limit, which turns out to be particularly interesting since it depends on the specific multicriticality. We see that, in general, the continuation in N of the random solutions is different from the continuation coming from large-N, and only the latter interpolates with the physically interesting cases of low-N such as N = 3. Finally, we also include an analysis of a theory with quintic interactions in $$ d=\frac{10}{3}-\epsilon $$ d = 10 3 − ϵ and, for completeness, the NNLO computations in d = 4 − ϵ.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Patrocinio Pérez ◽  
Ulises Nucamendi ◽  
Roberto De Arcia

AbstractWe apply the tools of the dynamical system theory in order to revisit and uncover the structure of a nongravitational interaction between pressureless dark matter and dark energy described by a scalar field $$\phi $$ ϕ . For a coupling function $$Q = -(\alpha d\rho _m/dt + \beta d\rho _\phi /dt )$$ Q = - ( α d ρ m / d t + β d ρ ϕ / d t ) , where t is the cosmic time, we have found that it can be rewritten in the form $$Q = 3H (\alpha \rho _m + \beta (d\phi /dt)^2 )/(1-\alpha +\beta )$$ Q = 3 H ( α ρ m + β ( d ϕ / d t ) 2 ) / ( 1 - α + β ) , so that its dependence on the dark matter density and on the kinetic term of the scalar field is linear and proportional to the Hubble parameter. We analyze the scenarios $$\alpha =0$$ α = 0 , $$\alpha = \beta $$ α = β and $$\alpha = -\beta $$ α = - β , separately and in order to describe the cosmological evolution we have calculated various observables. A notable result of this work is that, unlike for the noninteracting scalar field with exponential potential where five critical points appear, in the case studied here, with the exception of the matter dominated solution, the remaining singular points are transformed into scaling solutions enriching the phase space. It is shown that for $$\alpha \ne 0$$ α ≠ 0 , a separatrix arises modifying prominently the structure of the phase space. This represents a novel feature no mentioned before in the literature.


Author(s):  
L. N. Granda ◽  
D. F. Jimenez

Abstract A study of the slow-roll inflation for an exponential potential in the frame of the scalar-tensor theory is performed, where non-minimal kinetic coupling to curvature and non-minimal coupling of the scalar field to the Gauss-Bonnet invariant are considered. Different models were considered with couplings given by exponential functions of the scalar field, that lead to graceful exit from inflation and give values of the scalar spectral index and the tensor-to-scalar ratio in the region bounded by the current observational data. Special cases were found, where the coupling functions are inverse of the potential, that lead to inflation with constant slow-roll parameters, and it was possible to reconstruct the model parameters for given ns and r. In first-order approximation the standard consistency relation maintains its validity in the model with non-minimal coupling, but it modifies in presence of Gauss–Bonnet coupling. The obtained Hubble parameter during inflation, $$H\sim 10^{-5} M_p$$H∼10-5Mp and the energy scale of inflation $$V^{1/4}\sim 10^{-3} M_p$$V1/4∼10-3Mp, are consistent with the upper bounds set by latest observations.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 379
Author(s):  
Miguel Abadi ◽  
Vitor Amorim ◽  
Sandro Gallo

From a physical/dynamical system perspective, the potential well represents the proportional mass of points that escape the neighbourhood of a given point. In the last 20 years, several works have shown the importance of this quantity to obtain precise approximations for several recurrence time distributions in mixing stochastic processes and dynamical systems. Besides providing a review of the different scaling factors used in the literature in recurrence times, the present work contributes two new results: (1) For ϕ-mixing and ψ-mixing processes, we give a new exponential approximation for hitting and return times using the potential well as the scaling parameter. The error terms are explicit and sharp. (2) We analyse the uniform positivity of the potential well. Our results apply to processes on countable alphabets and do not assume a complete grammar.


2020 ◽  
Author(s):  
Michał Walicki

Abstract Graph normal form, introduced earlier for propositional logic, is shown to be a normal form also for first-order logic. It allows to view syntax of theories as digraphs, while their semantics as kernels of these digraphs. Graphs are particularly well suited for studying circularity, and we provide some general means for verifying that circular or apparently circular extensions are conservative. Traditional syntactic means of ensuring conservativity, like definitional extensions or positive occurrences guaranteeing exsitence of fixed points, emerge as special cases.


2009 ◽  
Vol 618-619 ◽  
pp. 341-344
Author(s):  
Sandrine Zanna ◽  
Yakov Frayman ◽  
Bruce Gunn ◽  
Saeid Nahavandi

This work evaluates the feasibility of using a holistic approach, based on dynamical system theory, to reduce porosity defects in high pressure aluminum die casting. Quality improvements, from a dynamical system perspective mean the ability to move the die casting process out of its natural equilibrium to a more beneficial state and the ability to maintain this new process state. This more beneficial state may be achieved in several ways. One way is to increase the amount of forcing to overcome natural process resistance. This forcing approach is represented by typical continuous intervention policy, with modifications in die/part design and/or process parameters. An alternative approach is to reduce the amount of natural process resistance, in particular the amount of process disturbance, allowing the process to move out of its natural equilibrium with much less forcing. This alternative uses the self-regulating ability of dynamical systems thus decreasing the amount of human intervention required. In this respect, the influence of vacuum on time on chattering at the first stage of the casting shot was identified as a good process candidate for testing using dynamical system theory. A significant reduction in porosity defects was achieved, which also set the process on a path of slow but consistent self-improvement.


2018 ◽  
Vol 98 (8) ◽  
Author(s):  
Hmar Zonunmawia ◽  
Wompherdeiki Khyllep ◽  
Jibitesh Dutta ◽  
Laur Järv

Sign in / Sign up

Export Citation Format

Share Document