scholarly journals Sailing Speed Optimization Model for Slow Steaming Considering Loss Aversion Mechanism

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yuzhe Zhao ◽  
Jingmiao Zhou ◽  
Yujun Fan ◽  
Haibo Kuang

This paper analyses loss aversion mechanism (LAM) of the shipping company’s decision-makers about the risk-based decision (RBD) for slow steaming and generalizes a novel optimization model for the sailing speed through the trade-off between fuel consumption, SOx emissions and delivery delay. The value functions against the benchmark speed were constructed based on physiological expected utility (PEU) to reveal the features of loss aversion, and the objective function was derived from these value functions with the aim to optimize the sailing speed. After that, a Genetic Algorithm (GA) solution with fitness function and special operators was built to solve the proposed model. Finally, the model was applied to pinpoint the PEU for the optimal sailing speed against the benchmark speed, and the sensitivity of the model was discussed with different benchmark speeds, value function weights and input parameters. The analysis shows that the proposed model can assist the slow steaming RBD based on the inner feelings of the shipping company’s decision-makers, offering a novel tool for sailing speed optimization.

Author(s):  
Namrata Rani ◽  
Vandana Goyal ◽  
Deepak Gupta

This paper has been designed to introduce the method for solving the Bi-level Multi-objective (BL-MO) Fully Quadratic Fractional Optimization Model through Fuzzy Goal Programming (FGP) approach by utilising non-linear programming. In Fully Quadratic Fractional Optimization Model, the objective functions are in fractional form, having quadratic functions in both numerator and denominator subject to quadratic constraints set. The motive behind this paper is to provide a solution to solve the BL-MO optimization model in which number of decision-makers (DM) exists at two levels in the hierarchy. First, the fractional functions with fuzzy demand, which are in the form of fuzzy numbers, are converted into crisp models by applying the concept of α-cuts. After that, membership functions are developed which are corresponding to each decision-maker’s objective and converted into simpler form to avoid complications due to calculations. Finally, the model is simplified by applying FGP approach, and a compromised solution to the initial model is obtained. An algorithm, flowchart and example are also given at the end to explain the study of the proposed model.


2020 ◽  
Vol 39 (3) ◽  
pp. 4041-4058
Author(s):  
Fang Liu ◽  
Xu Tan ◽  
Hui Yang ◽  
Hui Zhao

Intuitionistic fuzzy preference relations (IFPRs) have the natural ability to reflect the positive, the negative and the non-determinative judgements of decision makers. A decision making model is proposed by considering the inherent property of IFPRs in this study, where the main novelty comes with the introduction of the concept of additive approximate consistency. First, the consistency definitions of IFPRs are reviewed and the underlying ideas are analyzed. Second, by considering the allocation of the non-determinacy degree of decision makers’ opinions, the novel concept of approximate consistency for IFPRs is proposed. Then the additive approximate consistency of IFPRs is defined and the properties are studied. Third, the priorities of alternatives are derived from IFPRs with additive approximate consistency by considering the effects of the permutations of alternatives and the allocation of the non-determinacy degree. The rankings of alternatives based on real, interval and intuitionistic fuzzy weights are investigated, respectively. Finally, some comparisons are reported by carrying out numerical examples to show the novelty and advantage of the proposed model. It is found that the proposed model can offer various decision schemes due to the allocation of the non-determinacy degree of IFPRs.


2021 ◽  
Vol 11 (4) ◽  
pp. 1946
Author(s):  
Linh Thi Truc Doan ◽  
Yousef Amer ◽  
Sang-Heon Lee ◽  
Phan Nguyen Ky Phuc ◽  
Tham Thi Tran

Minimizing the impact of electronic waste (e-waste) on the environment through designing an effective reverse supply chain (RSC) is attracting the attention of both industry and academia. To obtain this goal, this study strives to develop an e-waste RSC model where the input parameters are fuzzy and risk factors are considered. The problem is then solved through crisp transformation and decision-makers are given the right to choose solutions based on their satisfaction. The result shows that the proposed model provides a practical and satisfactory solution to compromise between the level of satisfaction of constraints and the objective value. This solution includes strategic and operational decisions such as the optimal locations of facilities (i.e., disassembly, repairing, recycling facilities) and the flow quantities in the RSC.


Author(s):  
Vijitashwa Pandey ◽  
Deborah Thurston

Design for disassembly and reuse focuses on developing methods to minimize difficulty in disassembly for maintenance or reuse. These methods can gain substantially if the relationship between component attributes (material mix, ease of disassembly etc.) and their likelihood of reuse or disposal is understood. For products already in the marketplace, a feedback approach that evaluates willingness of manufacturers or customers (decision makers) to reuse a component can reveal how attributes of a component affect reuse decisions. This paper introduces some metrics and combines them with ones proposed in literature into a measure that captures the overall value of a decision made by the decision makers. The premise is that the decision makers would choose a decision that has the maximum value. Four decisions are considered regarding a component’s fate after recovery ranging from direct reuse to disposal. A method on the lines of discrete choice theory is utilized that uses maximum likelihood estimates to determine the parameters that define the value function. The maximum likelihood method can take inputs from actual decisions made by the decision makers to assess the value function. This function can be used to determine the likelihood that the component takes a certain path (one of the four decisions), taking as input its attributes, which can facilitate long range planning and also help determine ways reuse decisions can be influenced.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Lifeng Wu ◽  
Yan Chen

To deal with the forecasting with small samples in the supply chain, three grey models with fractional order accumulation are presented. Human judgment of future trends is incorporated into the order number of accumulation. The output of the proposed model will provide decision-makers in the supply chain with more forecasting information for short time periods. The results of practical real examples demonstrate that the model provides remarkable prediction performances compared with the traditional forecasting model.


Technologies ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 54
Author(s):  
Bozkurt ◽  
Karwowski ◽  
Çakıt ◽  
Ahram

This study presents a cellular automata (CA) model to assist decision-makers in understanding the effects of infrastructure development projects on adverse events in an active war theater. The adverse events are caused by terrorist activities that primarily target the civilian population in countries such as Afghanistan. In the CA-based model, cells in the same neighborhood synchronously interact with one another to determine their next states, and small changes in iteration yield to complex formations of adverse event risks. The results demonstrate that the proposed model can help in the evaluation of infrastructure development projects in relation to changes in the reported adverse events, as well as in the identification of the geographical locations, times, and impacts of such developments. The results also show that infrastructure development projects have different impacts on the reported adverse events. The CA modeling approach can be used to support decision-makers in allocating infrastructure development funds to stabilize active war regions with higher adverse event risks. Such models can also improve the understanding of the complex interactions between infrastructure development projects and adverse events.


Author(s):  
Abbas Al-Refaie ◽  
Mays Judeh ◽  
Ming-Hsien Li

AbstractLittle research has considered fuzzy scheduling and sequencing problem in operating rooms. Multiple-period fuzzy scheduling and sequencing of patients in operating rooms optimization models are proposed in this research taking into consideration patient‘s preference. The objective of the scheduling optimization model is obtaining minimal undertime and overtime and maximum patients' satisfaction about the assigned date. The objective of sequencing the optimization model is both to minimize overtime and to maximize patients' satisfaction about the assigned time. A real-life case study from a hospital that offers comprehensive surgical procedures for all surgical specialties is considered for illustration. Research results showed that the proposed models efficiently scheduled and sequenced patients while considering their preferences and hospitals operating costs. In conclusion, the proposed optimization models may result in improving patient satisfaction, utilizing hospital's resources efficiently, and providing assistance to decision makers and planners in solving effectively fuzzy scheduling and sequencing problems of operating rooms.


Author(s):  
Alekos Cecchin

We examine mean field control problems  on a finite state space, in continuous time and over a finite time horizon. We characterize the value function of the mean field control problem as the unique viscosity solution of a Hamilton-Jacobi-Bellman equation in the simplex. In absence of any convexity assumption, we exploit this characterization to prove convergence, as $N$ grows, of the value functions of the centralized $N$-agent optimal control problem to the limit mean field control problem  value function, with a convergence rate of order $\frac{1}{\sqrt{N}}$. Then, assuming convexity, we show that the limit value function is smooth and establish propagation of chaos, i.e.  convergence of the $N$-agent optimal trajectories to the unique limiting optimal trajectory, with an explicit rate.


Author(s):  
Edward Rollason ◽  
Pammi Sinha ◽  
Louise J Bracken

Water scarcity is a global issue, affecting in excess of four billion people. Interbasin Water Transfer (IBWT) is an established method for increasing water supply by transferring excess water from one catchment to another, water-scarce catchment. The implementation of IBWT peaked in the 1980s and was accompanied by a robust academic debate of its impacts. A recent resurgence in the popularity of IBWT, and particularly the promotion of mega-scale schemes, warrants revisiting this technology. This paper provides an updated review, building on previously published work, but also incorporates learning from schemes developed since the 1980s. We examine the spatial and temporal distribution of schemes and their drivers, review the arguments for and against the implementation of IBWT schemes and examine conceptual models for assessing IBWT schemes. Our analysis suggests that IBWT is growing in popularity as a supply-side solution for water scarcity and is likely to represent a key tool for water managers into the future. However, we argue that IBWT cannot continue to be delivered through current approaches, which prioritise water-centric policies and practices at the expense of social and environmental concerns. We critically examine the Socio-Ecological Systems and Water-Energy-Food (WEF) Nexus models as new conceptual models for conceptualising and assessing IBWT. We conclude that neither model offers a comprehensive solution. Instead, we propose an enhanced WEF model (eWEF) to facilitate a more holistic assessment of how these mega-scale engineering interventions are integrated into water management strategies. The proposed model will help water managers, decision-makers, IBWT funders and communities create more sustainable IBWT schemes.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Abhishek Dixit ◽  
Akhilesh Tiwari ◽  
R. K. Gupta

The present paper proposes a new model for the exploration of hesitated patterns from multiple levels of conceptual hierarchy in the transactional dataset. The usual practice of mining patterns has focused on identifying frequent patterns (i.e., which occur together) in the transactional dataset but uncovers the vital information about the patterns which are almost frequent (but not exactly frequent) called “hesitated patterns.” The proposed model uses the reduced minimum support threshold (contains two values: attractiveness and hesitation) and constant minimum confidence threshold with the top-down progressive deepening approach for generating patterns and utilizing the apriori property. To validate the model, an online purchasing scenario of books through e-commerce-based online shopping platforms such as Amazon has been considered and shown that how the various factors contributed towards building hesitation to purchase a book at the time of purchasing. The present work suggests a novel way for deriving hesitated patterns from multiple levels in the conceptual hierarchy with respect to the target dataset. Moreover, it is observed that the concepts and theories available in the existing related work Lu and Ng (2007) are only focusing on the introductory aspect of vague set theory-based hesitation association rule mining, which is not useful for handling the patterns from multiple levels of granularity, while the proposed model is complete in nature and addresses the very significant and untouched problem of mining “multilevel hesitated patterns” and is certainly useful for exploring the hesitated patterns from multiple levels of granularity based on the considered hesitation status in a transactional dataset. These hesitated patterns can be further utilized by decision makers and business analysts to build the strategy on how to increase the attraction level of such hesitated items (appeared in a particular transaction/set of transactions in a given dataset) to convert their state from hesitated to preferred items.


Sign in / Sign up

Export Citation Format

Share Document