scholarly journals The Sufficient Immunoregulatory Effect of Autologous Bone Marrow-Derived Mesenchymal Stem Cell Transplantation on Regulatory T Cells in Patients with Refractory Rheumatoid Arthritis

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Mohsen Ghoryani ◽  
Zhaleh Shariati-Sarabi ◽  
Jalil Tavakkol-Afshari ◽  
Mojgan Mohammadi

Rheumatoid arthritis (RA) is an advanced autoimmune disease described by joint involvement. The special properties of mesenchymal stem cells (MSCs) introduced them as a potential therapeutic candidate for RA. In this study, a single dose of autologous MSCs isolated from bone marrow (autologous BM-MSCs, 1×106 per kg) was injected intravenously into 13 patients suffering from refractory RA who were followed up within 12 months after the intervention to evaluate immunological elements. Our results showed that the gene expression of forkhead box P3 (FOXP3) in peripheral blood mononuclear cells (PBMCs) considerably increased at month 12. We found a substantial increasing trend in the culture supernatant levels of IL-10 and transforming growth factor-beta 1 (TGF-β1) in PBMCs from the beginning of the intervention up to the end. Our data may reflect the sufficient immunoregulatory effect of autologous BM-MSCs on regulatory T cells in patients suffering from refractory RA.

2005 ◽  
Vol 79 (23) ◽  
pp. 14526-14535 ◽  
Author(s):  
Carlos F. Narváez ◽  
Juana Angel ◽  
Manuel A. Franco

ABSTRACT We have previously shown that very few rotavirus (RV)-specific T cells that secrete gamma interferon circulate in recently infected and seropositive adults and children. Here, we have studied the interaction of RV with myeloid immature (IDC) and mature dendritic cells (MDC) in vitro. RV did not induce cell death of IDC or MDC and induced maturation of between 12 and 48% of IDC. Nonetheless, RV did not inhibit the maturation of IDC or change the expression of maturation markers on MDC. After treatment with RV, few IDC expressed the nonstructural viral protein NSP4. In contrast, a discrete productive viral infection was shown in MDC of a subset of volunteers, and between 3 and 46% of these cells expressed NSP4. RV-treated IDC secreted interleukin 6 (IL-6) (but not IL-1β, IL-8, IL-10, IL-12, tumor necrosis factor alpha, or transforming growth factor beta), and MDC released IL-6 and small amounts of IL-10 and IL-12p70. The patterns of cytokines secreted by T cells stimulated by staphylococcal enterotoxin B presented by MDC infected with RV or uninfected were comparable. The frequencies and patterns of cytokines secreted by memory RV-specific T cells evidenced after stimulation of peripheral blood mononuclear cells (PBMC) with RV were similar to those evidenced after stimulation of PBMC with RV-infected MDC. Finally, IDC treated with RV strongly stimulated naive allogeneic CD4+ T cells to secrete Th1 cytokines. Thus, although RV does not seem to be a strong maturing stimulus for DC, it promotes their capacity to prime Th1 cells.


2018 ◽  
Vol 50 (5) ◽  
pp. 1754-1763 ◽  
Author(s):  
Liping Wang ◽  
Chunyan Wang ◽  
Xuqiang Jia ◽  
Jing Yu

Background/Aims: A reduced prevalence of circulating regulatory T cells (Tregs)is a hallmark of inflammatory rheumatoid arthritis (RA). However, the underlying mechanisms of alterations of Tregs are unclear. Methods: The ratio of Tregs in peripheral blood of healthy controls (HCs) and patients with RA was determined by flow cytometry. MicroRNA (miRNA) expression profiles in exosomes derived from RA patients (RA-exosomes) and in those from HCs (HC-exosomes) were detected by microarray analysis, and miR-17 was measured by quantitative real-time PCR. Transforming growth factor beta receptor II (TGFBR II) expressed by T cells was measured by flow cytometry. The interaction between miR-17 and TGFBR II was evaluated by dual-luciferase reporter assay. Results: We found that RA-exosomes can selectively affect Treg differentiation in vitro. Several miRNAs are more abundant in the RA-exosomes than in HC-exosomes. Among those upregulated in patients with RA, miR-17 can suppress Treg induction by inhibiting the expression of TGFBR II. Conclusion: Our findings imply that altered miRNA expression in RA-exosomes may contribute to the pathogenesis of RA by disrupting the homeostasis of Tregs.


Author(s):  
L. Sams ◽  
S. Kruger ◽  
V. Heinemann ◽  
D. Bararia ◽  
S. Haebe ◽  
...  

Abstract Purpose This pilot study aimed on generating insight on alterations in circulating immune cells during the use of FOLFIRINOX and gemcitabine/nab-paclitaxel in pancreatic ductal adenocarcinoma (PDAC). Patients and methods Peripheral blood mononuclear cells were isolated before and 30 days after initiation of chemotherapy from 20 patients with advanced PDAC. Regulatory T cells (FoxP3+) and immune checkpoints (PD-1 and TIM-3) were analyzed by flow cytometry and immunological changes were correlated with clinical outcome. Results Heterogeneous changes during chemotherapy were observed in circulating T-cell subpopulations with a pronounced effect on PD-1+ CD4+/CD8+ T cells. An increase in FoxP3+ or PD-1+ T cells had no significant effect on survival. An increase in TIM3+/CD8+ (but not TIM3+/CD4+) T cells was associated with a significant inferior outcome: median progression-free survival in the subgroup with an increase of TIM-3+/CD8+ T cells was 6.0 compared to 14.0 months in patients with a decrease/no change (p = 0.026); corresponding median overall survival was 13.0 and 20.0 months (p = 0.011), respectively. Conclusions Chemotherapy with FOLFIRNOX or gemcitabine/nab-paclitaxel induces variable changes in circulating T-cell populations that may provide prognostic information in PDAC.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 18.2-18
Author(s):  
P. Brown ◽  
A. Anderson ◽  
B. Hargreaves ◽  
A. Morgan ◽  
J. D. Isaacs ◽  
...  

Background:The long term outcomes for patients with rheumatoid arthritis (RA) depend on early and effective disease control. Methotrexate remains the key first line disease modifying therapy for the majority of patients, with 40% achieving an ACR50 on monotherapy(1). There are at present no effective biomarkers to predict treatment response, preventing effective personalisation of therapy. A putative mechanism of action of methotrexate, the potentiation of anti-inflammatory adenosine signalling, may inform biomarker discovery. By antagonism of the ATIC enzyme in the purine synthesis pathway, methotrexate has been proposed to increase the release of adenosine moieties from cells, which exert an anti-inflammatory effect through interaction with ADORA2 receptors(2). Lower expression of CD39 (a cell surface 5-’ectonucleotidase required for the first step in the conversion of ATP to adenosine) on circulating regulatory T-Lymphocytes (Tregs) was previously identified in patients already established on methotrexate who were not responding (DAS28 >4.0 vs <3.0)(3). We therefore hypothesised that pre-treatment CD39 expression on these cells may have clinical utility as a predictor of early methotrexate efficacy.Objectives:To characterise CD39 expression in peripheral blood mononuclear cells in RA patients naïve to disease modifying therapy commencing methotrexate, and relate this expression to 4 variable DAS28CRP remission (<2.6) at 6 months.Methods:68 treatment naïve early RA patients starting methotrexate were recruited from the Newcastle Early Arthritis Clinic and followed up for 6 months. Serial blood samples were taken before and during methotrexate therapy with peripheral blood mononuclear cells isolated by density centrifugation. Expression of CD39 by major immune subsets (CD4+ and CD8+ T-cells, B-lymphocytes, natural killer cells and monocytes) was determined by flow cytometry. The statistical analysis used was binomial logistic regression with baseline DAS28CRP used as a covariate due to the significant association of baseline disease activity with treatment response.Results:Higher pre-treatment CD39 expression was observed in circulating CD4+ T-cells of patients who subsequently achieved clinical remission at 6 months versus those who did not (median fluorescence 4854.0 vs 3324.2; p = 0.0108; Figure 1-A). This CD39 expression pattern was primarily accounted for by the CD4+CD25 high sub-population (median fluorescence 9804.7 vs 6455.5; p = 0.0065; Figure 1-B). These CD25 high cells were observed to have higher FoxP3 and lower CD127 expression than their CD39 negative counterparts, indicating a Treg phenotype. No significant associations were observed with any other circulating subset. A ROC curve demonstrates the discriminative utility of differential CD39 expression in the CD4+CD25 high population for the prediction of DAS28CRP remission in this cohort, showing greater specificity than sensitivity for remission prediction(AUC: 0.725; 95% CI: 0.53 - 0.92; Figure 1-C). Longitudinally, no significant induction or suppression of the CD39 marker was observed amongst patients who did or did not achieve remission over the 6 months follow-up period.Figure 1.Six month DAS28CRP remission versus pre-treatment median fluorescence of CD39 expression on CD4+ T-cells (A); CD25 High expressing CD4+ T-cells (B); and ROC curve of predictive utility of pre-treatment CD39 expression on CD25 High CD4+ T-cells (C).Conclusion:These findings support the potential role of CD39 in the mechanism of methotrexate response. Expression of CD39 on circulating Tregs in treatment-naïve RA patients may have particular value in identifying early RA patients likely to respond to methotrexate, and hence add value to evolving multi-parameter discriminatory algorithms.References:[1]Hazlewood GS, et al. BMJ. 2016 21;353:i1777[2]Brown PM, et al. Nat Rev Rheumatol. 2016;12(12):731-742[3]Peres RS, et al. Proc Natl Acad Sci U S A. 2015;112(8):2509-2514Disclosure of Interests:None declared


2021 ◽  
Author(s):  
Yannick D. Muller ◽  
Leonardo M.R. Ferreira ◽  
Emilie Ronin ◽  
Patrick Ho ◽  
Vinh Nguyen ◽  
...  

Infusion of regulatory T cells (Tregs) engineered with a chimeric antigen receptor (CAR) targeting donor-derived human leukocyte antigen (HLA) is a promising strategy to promote transplant tolerance. Here, we describe an anti-HLA-A2 CAR (A2-CAR) generated by grafting the complementarity-determining regions (CDRs) of a human monoclonal anti-HLA-A2 antibody into the framework regions of the Herceptin 4D5 single-chain variable fragment and fusing it with a CD28-zeta signaling domain. The CDR-grafted A2-CAR maintained the specificity of the original antibody. We then generated HLA-A2 mono-specific human CAR Tregs either by deleting the endogenous T-cell receptor (TCR) via CRISPR/Cas9 and introducing the A2-CAR using lentiviral transduction or by directly integrating the CAR construct into the TCR alpha constant locus using homology-directed repair. These A2-CAR+TCRdeficient human Tregs maintained both Treg phenotype and function in vitro. Moreover, they selectively accumulated in HLA-A2-expressing islets transplanted from either HLA-A2 transgenic mice or deceased human donors. A2-CAR+TCRdeficient Tregs did not impair the function of these HLA-A2+ islets, whereas similarly engineered A2-CAR+TCRdeficientCD4+ conventional T cells rejected the islets in less than 2 weeks. A2-CAR+TCRdeficient Tregs delayed graft-versus-host disease only in the presence of HLA-A2, expressed either by co-transferred peripheral blood mononuclear cells or by the recipient mice. Altogether, we demonstrate that genome-engineered mono-antigen-specific A2-CAR Tregs localize to HLA-A2-expressing grafts and exhibit antigen-dependent in vivo suppression, independent of TCR expression. These approaches may be applied towards developing precision Treg cell therapies for transplant tolerance.


Biology ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 211 ◽  
Author(s):  
Nour Z. Atwany ◽  
Seyedeh-Khadijeh Hashemi ◽  
Manju Nidagodu Jayakumar ◽  
Mitzi Nagarkatti ◽  
Prakash Nagarkatti ◽  
...  

Regulatory T cells (Tregs) are key players in the regulation of inflammatory responses. In this study, two natural molecules, namely, sparteine sulfate (SS) and harpagoside (Harp), were investigated for their ability to induce Tregs in human peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from healthy volunteers and grown in the presence or absence of ConA, with TGF-beta, SS or Harp. Expression of the mRNA of FoxP3, TGF-beta, IL-10 and GAPDH was assessed via q-PCR. The expression of Treg markers including CD4, CD25, CD127 and FoxP3 was measured via flow cytometry. The secretion of IL-10 and TGF-beta by cultured cells was assessed by ELISA. Furthermore, the suppressive role of SS and Harp on PBMCs in vitro was tested via allogeneic mixed lymphocyte reaction (MLR). Data obtained show that both compounds increased the expression of FoxP3, TGF-beta and IL-10 mRNA in resting PBMCs but to a lesser extent in activated cells. Moreover, they significantly increased the percent of CD4+CD25+FoxP3+CD127− Tregs in activated and naïve PBMCs. Functionally, both compounds caused a significant reduction in the stimulation index in allogeneic MLR. Together, our data demonstrate for the first time that SS and Harp can induce human Tregs in vitro and therefore have great potential as anti-inflammatory agents.


Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1595-1603 ◽  
Author(s):  
K Welte ◽  
CA Keever ◽  
J Levick ◽  
MA Bonilla ◽  
VJ Merluzzi ◽  
...  

Abstract The ability of peripheral blood mononuclear cells (PBMC) to produce and respond to interleukin-2 (IL-2) was evaluated in 50 recipients of HLA- identical bone marrow (BM) depleted of mature T cells by soybean agglutination and E rosetting (SBA-E-BM). In contrast to our previous findings in recipients of unfractionated marrow, during weeks 3 to 7 post-SBA-E-BM transplantation (BMT), PBMC from the majority of patients spontaneously released IL-2 into the culture medium. This IL-2 was not produced by Leu-11+ natural killer cells, which were found to be predominant in the circulation at this time, but by T11+, T3+, Ia antigen-bearing T cells. The IL-2 production could be enhanced by coculture with host PBMC frozen before transplant but not by stimulation with mitogenic amounts of OKT3 antibody, thus suggesting an in vivo activation of donor T cells or their precursors by host tissue. Spontaneous IL-2 production was inversely proportional to the number of circulating peripheral blood lymphocytes and ceased after 7 to 8 weeks post-SBA-E-BMT in most of the patients. In patients whose cells had ceased to produce IL-2 spontaneously or never produced this cytokine, neither coculture with host cells nor stimulation with OKT3 antibody thereafter induced IL-2 release through the first year posttransplant. Proliferative responses to exogenous IL-2 after stimulation with OKT3 antibody remained abnormal for up to 6 months post-SBA-E-BMT, unlike the responses of PBMC from recipients of conventional BM, which responded normally by 1 month post-BMT. However, the upregulation of IL- 2 receptor expression by exogenous IL-2 was found to be comparable to normal controls when tested as early as 3 weeks post-SBA-E-BMT. Therefore, the immunologic recovery of proliferative responses to IL-2 and the appearance of cells regulating in vivo activation of T cells appear to be more delayed in patients receiving T cell-depleted BMT. Similar to patients receiving conventional BMT, however, the ability to produce IL-2 after mitogenic stimulation remains depressed for up to 1 year after transplantation.


Sign in / Sign up

Export Citation Format

Share Document