scholarly journals Recognition of Immune Microenvironment Landscape and Immune-Related Prognostic Genes in Breast Cancer

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Huiling Wang ◽  
Shuo You ◽  
Meng Fang ◽  
Qian Fang

Background. Breast cancer (BC) is the most common malignant tumor in women. The immunophenotype of tumor microenvironment (TME) has shown great therapeutic potential in tumor. Method. The transcriptome was obtained from TCGA and GEO data. Immune infiltration was analyzed by single-sample gene set enrichment (ssGSEA). The immune feature was constructed by Cox regression analysis. In addition, the coexpression of differential expression genes (DEGs) was identified. Through enrichment analysis, the function and pathway of module genes were identified. The somatic mutations related to immune characteristics were analyzed by Maftools. By using the consistency clustering algorithm, the molecular subtypes were constructed, and the overall survival time (OS) was predicted. Results. Immune landscape can be divided into low immune infiltration and high immune infiltration. Cox regression analysis identified seven immune cells as protective factors of BC. In the coexpression modules for DEGs of high and low immune infiltration, module 1 was related to T cells and high immune infiltration. In particular, the area under the curve (AUC) value of hub gene SASH3 was the highest, and the correlation with T cells was stronger in the high immune infiltration. Enrichment analysis found that oxidative stress, T cell aggregation, and apoptosis were observed in high immune infiltration. In addition, TP53 was identified as the most important somatic gene mutation related to immune characteristics. Importantly, we also constructed seven immune cell-based breast cancer subtypes to predict OS. Conclusion. We evaluated the immune landscape of BC and constructed the gene characteristics related to the immune landscape. The potential of T cells and SASH3 in immunotherapy of BC was revealed, which may guide the development of new clinical treatment strategies.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yilin Lin ◽  
Xiaoxian Pan ◽  
Zhihua Chen ◽  
Suyong Lin ◽  
Zhanlong Shen ◽  
...  

Abstract Background Growing evidence has shown that the prognosis for colon cancer depends on changes in microenvironment. The purpose of this study was to elucidate the prognostic value of long noncoding RNAs (lncRNAs) related to immune microenvironment (IM) in colon cancer. Methods Single sample gene set enrichment analysis (ssGSEA) was used to identify the subtypes of colon cancer based on the immune genomes of 29 immune signatures. Cox regression analysis identified a lncRNA signatures associated with immune infiltration. The Tumor Immune Estimation Resource database was used to analyze immune cell content. Results Colon cancer samples were divided into three subtypes by unsupervised cluster analysis. Cox regression analysis identified an immune infiltration-related 5-lncRNA signature. This signature combined with clinical factors can effectively improve the predictive ability for the overall survival (OS) of colon cancer. At the same time, we found that the expression of H19 affects the content of B cells and macrophages in the microenvironment of colon cancer and affects the prognosis of colon cancer. Finally, we constructed the H19 regulatory network and further analyzed the possible mechanisms. We found that knocking down the expression of H19 can significantly inhibit the expression of CCND1 and VEGFA. At the same time, the immunohistochemical assay found that the expression of CCND1 and VEGFA protein was significantly positively correlated with the infiltration of M2 type macrophages. Conclusion The findings may help to formulate clinical strategies and understand the underlying mechanisms of H19 regulation. H19 may be a biomarker for targeted treatment of colon cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guomin Wu ◽  
Qihao Wang ◽  
Ting Zhu ◽  
Linhai Fu ◽  
Zhupeng Li ◽  
...  

This study aimed to establish a prognostic risk model for lung adenocarcinoma (LUAD). We firstly divided 535 LUAD samples in TCGA-LUAD into high-, medium-, and low-immune infiltration groups by consensus clustering analysis according to immunological competence assessment by single-sample gene set enrichment analysis (ssGSEA). Profile of long non-coding RNAs (lncRNAs) in normal samples and LUAD samples in TCGA was used for a differential expression analysis in the high- and low-immune infiltration groups. A total of 1,570 immune-related differential lncRNAs in LUAD were obtained by intersecting the above results. Afterward, univariate COX regression analysis and multivariate stepwise COX regression analysis were conducted to screen prognosis-related lncRNAs, and an eight-immune-related-lncRNA prognostic signature was finally acquired (AL365181.2, AC012213.4, DRAIC, MRGPRG-AS1, AP002478.1, AC092168.2, FAM30A, and LINC02412). Kaplan–Meier analysis and ROC analysis indicated that the eight-lncRNA-based model was accurate to predict the prognosis of LUAD patients. Simultaneously, univariate COX regression analysis and multivariate COX regression analysis were undertaken on clinical features and risk scores. It was illustrated that the risk score was a prognostic factor independent from clinical features. Moreover, immune data of LUAD in the TIMER database were analyzed. The eight-immune-related-lncRNA prognostic signature was related to the infiltration of B cells, CD4+ T cells, and dendritic cells. GSEA enrichment analysis revealed significant differences in high- and low-risk groups in pathways like pentose phosphate pathway, ubiquitin mediated proteolysis, and P53 signaling pathway. This study helps to treat LUAD patients and explore molecules related to LUAD immune infiltration to deeply understand the specific mechanism.


2021 ◽  
Vol 16 ◽  
Author(s):  
Dongqing Su ◽  
Qianzi Lu ◽  
Yi Pan ◽  
Yao Yu ◽  
Shiyuan Wang ◽  
...  

Background: Breast cancer has plagued women for many years and caused many deaths around the world. Method: In this study, based on the weighted correlation network analysis, univariate Cox regression analysis and least absolute shrinkage and selection operator, 12 immune-related genes were selected to construct the risk score for breast cancer patients. The multivariable Cox regression analysis, gene set enrichment analysis and nomogram were also conducted in this study. Results: Good results were obtained in the survival analysis, enrichment analysis, multivariable Cox regression analysis and immune-related feature analysis. When the risk score model was applied in 22 breast cancer cohorts, the univariate Cox regression analysis demonstrated that the risk score model was significantly associated with overall survival in most of the breast cancer cohorts. Conclusion: Based on these results, we could conclude that the proposed risk score model may be a promising method, and may improve the treatment stratification of breast cancer patients in the future work.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoping Li ◽  
Jishang Chen ◽  
Qihe Yu ◽  
Hui Huang ◽  
Zhuangsheng Liu ◽  
...  

Background: A surge in newly diagnosed breast cancer has overwhelmed the public health system worldwide. Joint effort had beed made to discover the genetic mechanism of these disease globally. Accumulated research has revealed autophagy may act as a vital part in the pathogenesis of breast cancer.Objective: Aim to construct a prognostic model based on autophagy-related lncRNAs and investigate their potential mechanisms in breast cancer.Methods: The transcriptome data and clinical information of patients with breast cancer were obtained from The Cancer Genome Atlas (TCGA) database. Autophagy-related genes were obtained from the Human Autophagy Database (HADb). Long non-coding RNAs (lncRNAs) related to autophagy were acquired through the Pearson correlation analysis. Univariate Cox regression analysis as well as the least absolute shrinkage and selection operator (LASSO) regression analysis were used to identify autophagy-related lncRNAs with prognostic value. We constructed a risk scoring model to assess the prognostic significance of the autophagy-related lncRNAs signatures. The nomogram was then established based on the risk score and clinical indicators. Through the calibration curve, the concordance index (C-index) and receiver operating characteristic (ROC) curve analysis were evaluated to obtain the model's predictive performance. Subgroup analysis was performed to evaluate the differential ability of the model. Subsequently, gene set enrichment analysis was conducted to investigate the potential functions of these lncRNAs.Results: We attained 1,164 breast cancer samples from the TCGA database and 231 autophagy-related genes from the HAD database. Through correlation analysis, 179 autophagy-related lncRNAs were finally identified. Univariate Cox regression analysis and LASSO regression analysis further screened 18 prognosis-associated lncRNAs. The risk scoring model was constructed to divide patients into high-risk and low-risk groups. It was found that the low-risk group had better overall survival (OS) than those of the high-risk group. Then, the nomogram model including age, tumor stage, TNM stage and risk score was established. The evaluation index (C-index: 0.78, 3-year OS AUC: 0.813 and 5-year OS AUC: 0.785) showed that the nomogram had excellent predictive power. Subgroup analysis showed there were difference in OS between high-risk and low-risk patients in different subgroups (stage I-II, ER positive, Her-2 negative and non-TNBC subgroups; all P < 0.05). According to the results of gene set enrichment analysis, these lncRNAs were involved in the regulation of multicellular organismal macromolecule metabolic process in multicellular organisms, nucleotide excision repair, oxidative phosphorylation, and TGF-β signaling pathway.Conclusions: We identified 18 autophagy-related lncRNAs with prognostic value in breast cancer, which may regulate tumor growth and progression in multiple ways.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jinhui Liu ◽  
Mengting Xu ◽  
Zhipeng Wu ◽  
Yan Yang ◽  
Shuning Yuan ◽  
...  

Increasing numbers of biomarkers have been identified in various cancers. However, biomarkers associated with endometrial carcinoma (EC) remain largely to be explored. In the current research, we downloaded the RNA-seq data and corresponding clinicopathological features from the Cancer Genome Atlas (TCGA) database. We conducted an expression analysis, which resulted in RILPL2 as a novel diagnostic biomarker in EC. The dysregulation of RILPL2 in EC was also validated in multiple datasets. The correlations between clinical features and RILPL2 expression were assessed by logistic regression analysis. Then, Kaplan-Meier analysis, univariate and multivariate Cox regression analysis were performed to estimate prognostic values of RILPL2 in the TCGA cohort, which revealed that increased level of RILPL2 was remarkably associated with better prognosis and could act as an independent prognostic biomarker in patients with EC. Moreover, correlation analysis of RILPL2 and tumor-infiltrating immune cells (TIICs) indicated that RILPL2 might play a critical role in regulating immune cell infiltration in EC and is related to immune response. Besides, high methylation level was a significant cause of low RILPL2 expression in EC. Subsequently, weighted gene co-expression network analysis (WGCNA) and enrichment analysis were conducted to explore the RILPL2-involved underlying oncogenic mechanisms, and the results indicated that RILPL2 mainly regulated cell cycle. In conclusion, our findings provided evidence that downregulation of RILPL2 in EC is an indicator of adverse prognosis and RILPL2 may act as a promising target for the therapeutics of EC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yudong Cao ◽  
Hecheng Zhu ◽  
Jun Tan ◽  
Wen Yin ◽  
Quanwei Zhou ◽  
...  

IntroductionGlioma is the most common primary cancer of the central nervous system with dismal prognosis. Long noncoding RNAs (lncRNAs) have been discovered to play key roles in tumorigenesis in various cancers, including glioma. Because of the relevance between immune infiltrating and clinical outcome of glioma, identifying immune-related lncRNAs is urgent for better personalized management.Materials and methodsSingle-sample gene set enrichment analysis (ssGSEA) was applied to estimate immune infiltration, and glioma samples were divided into high immune cell infiltration group and low immune cell infiltration group. After screening differentially expressed lncRNAs in two immune groups, least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to construct an immune-related prognostic signature. Additionally, we explored the correlation between immune infiltration and the prognostic signature.ResultsA total of 653 samples were appropriate for further analyses, and 10 lncRNAs were identified as immune-related lncRNAs in glioma. After univariate Cox regression and LASSO Cox regression analysis, six lncRNAs were identified to construct a prognostic signature for glioma, which could be taken as independent prognostic factors in both univariate and multivariate Cox regression analyses. Moreover, risk score was significantly correlated with all the 29 immune-related checkpoint expression (p < 0.05) in ssGSEA except neutrophils (p = 0.43).ConclusionThe study constructed an immune-related prognostic signature for glioma, which contributed to improve clinical outcome prediction and guide immunotherapy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhengjie Xu ◽  
Suxiao Jiang ◽  
Juan Ma ◽  
Desheng Tang ◽  
Changsheng Yan ◽  
...  

Background: Breast cancer (BC) is a heterogeneous malignant tumor, leading to the second major cause of female mortality. This study aimed to establish an in-depth relationship between ferroptosis-related LncRNA (FRlncRNA) and the prognosis as well as immune microenvironment of the patients with BC.Methods: We downloaded and integrated the gene expression data and the clinical information of the patients with BC from The Cancer Genome Atlas (TCGA) database. The co-expression network analysis and univariate Cox regression analysis were performed to screen out the FRlncRNAs related to prognosis. A cluster analysis was adopted to explore the difference of immune microenvironment between the clusters. Furthermore, we determined the optimal survival-related FRLncRNAs for final signature by LASSO Cox regression analysis. Afterward, we constructed and validated the prediction models, which were further tested in different subgroups.Results: A total of 31 FRLncRNAs were filtrated as prognostic biomarkers. Two clusters were determined, and C1 showed better prognosis and higher infiltration level of immune cells, such as B cells naive, plasma cells, T cells CD8, and T cells CD4 memory activated. However, there were no significantly different clinical characters between the clusters. Gene Set Enrichment Analysis (GSEA) revealed that some metabolism-related pathways and immune-associated pathways were exposed. In addition, 12 FRLncRNAs were determined by LASSO analysis and used to construct a prognostic signature. In both the training and testing sets, patients in the high-risk group had a worse survival than the low-risk patients. The area under the curves (AUCs) of receiver operator characteristic (ROC) curves were about 0.700, showing positive prognostic capacity. More notably, through the comprehensive analysis of heatmap, we regarded LINC01871, LINC02384, LIPE-AS1, and HSD11B1-AS1 as protective LncRNAs, while LINC00393, AC121247.2, AC010655.2, LINC01419, PTPRD-AS1, AC099329.2, OTUD6B-AS1, and LINC02266 were classified as risk LncRNAs. At the same time, the patients in the low-risk groups were more likely to be assigned to C1 and had a higher immune score, which were consistent with a better prognosis.Conclusion: Our research indicated that the ferroptosis-related prognostic signature could be used as novel biomarkers for predicting the prognosis of BC. The differences in the immune microenvironment exhibited by BC patients with different risks and clusters suggested that there may be a complementary synergistic effect between ferroptosis and immunotherapy.


2020 ◽  
Author(s):  
Hongli Yin ◽  
Weiwei Song ◽  
Chenguang Han ◽  
Qiantai Mao ◽  
Zhaoshuai Ji ◽  
...  

Abstract Background: In the past few years, tumor microenvironment (TME) has gradually become a hot topic in tumor research, which has important significance in the diagnosis, prevention and prognosis of tumors. Importantly, the immune system is a major contributing factor in TME, and studies have shown that tumors are partially infiltrated with various immune cell subsets. The immune characteristics of the TME play an essential role in evaluating the prognosis of patients. The immune scoring system based on the distribution of tumor local immune cell subsets and cell density has been an essential indicator in the evaluation of patient prognosis and has been verified in various tumor studies. TME is indispensable in the occurrence and development of Colorectal cancer (CRC). However, understanding the dynamic regulation of immunity and matrix components in TME of CRC is still a challenge and should be investigated further.Methods: In this study, we collected transcriptome RNA-seq data of 521 Colon adenocarcinoma (COAD) patients from The Cancer Genome Atlas (TCGA) data portal. We then estimate the fraction of stromal and immune cells in COAD cases by ESTIMATE algorithms [1]. A total of 1109 stromal-immune score-related differentially expressed genes (DEGs) were identified and used to generate a high-confidence protein–protein intersection (PPI) network and univariate COX regression analysis. Intersection analysis of the data from PPI network and univariate COX regression analysis showed the core gene. Then we performed Gene set enrichment analysis (GSEA), survival analysis and clinical analysis for CXCL10, and applied CIBERSORT algorithms to estimate the tumor-infiltrating immune cells (TICs) proportion in COAD cases.Results: The proportion of immune and stromal components in TME are associated with the progression of COAD. For example, tumor metastasis is inversely proportional to immune score. A total of 1109 DEGs were obtained by analyzing the low-score shared genes and the high-score shared genes by intersection analysis which might be the determinant of TME status. The GO enrichment analysis indicated that DEGs are associated with immune-related terms. KEGG pathway enrichment analysis showed that these DEGs are mainly enriched in cytokine cytokine receptor signaling pathway etc. Therefore, DEGs are related to immune regulation, which indicates that the participation of immune factors is the main characteristic of TME in COAD. Moreover, the expression level of CXCL10 has significantly connection with the prognosis of patients and the progression of COAD. Conclusion: Taken together, we conducted a comprehensive analysis of the TME in COAD, and predicted a prognostic indicator for COAD, which provided a novel insight for therapeutics of COAD.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Rui Wang ◽  
Wenxuan Bu ◽  
Yang Yang

Multiple myeloma (MM) is the second most commonly diagnosed hematological malignancy. Understanding the basic mechanisms of the metabolism in MM may lead to new therapies that benefit patients. We collected the gene expression profile data of GSE39754 and performed differential analysis. Furthermore, identify the candidate genes that affect the prognosis of the differentially expressed genes (DEGs) related to the metabolism. Enrichment analysis is used to identify the biological effects of candidate genes. Perform coexpression analysis on the verified DEGs. In addition, the candidate genes are used to cluster MM into different subtypes through consistent clustering. Use LASSO regression analysis to identify key genes, and use Cox regression analysis to evaluate the prognostic effects of key genes. Evaluation of immune cell infiltration in MM is by CIBERSORT. We identified 2821 DEGs, of which 348 genes were metabolic-related prognostic genes and were considered candidate genes. Enrichment analysis revealed that the candidate genes are mainly related to the proteasome, purine metabolism, and cysteine and methionine metabolism signaling pathways. According to the consensus clustering method, we identified the two subtypes of group 1 and group 2 that affect the prognosis of MM patients. Using the LASSO model, we have identified 10 key genes. The prognosis of the high-risk group identified by Cox regression analysis is worse than that of the low-risk group. Among them, PKLR has a greater impact on the prognosis of MM, and the prognosis of MM patients is poor when the expression is high. In addition, the level of immune cell infiltration in the high-risk group is higher than that in the low-risk group. In the summary, metabolism-related genes significantly affect the prognosis of MM patients through the metabolic process of MM patients. PKLR may be a prognostic risk factor for MM patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhijian Huang ◽  
Chen Xiao ◽  
Fushou Zhang ◽  
Zhifeng Zhou ◽  
Liang Yu ◽  
...  

Background: Breast cancer (BC) is one of the most frequently diagnosed malignancies among females. As a huge heterogeneity of malignant tumor, it is important to seek reliable molecular biomarkers to carry out the stratification for patients with BC. We surveyed immune- associated lncRNAs that may be used as potential therapeutic targets in BC.Methods: LncRNA expression data and clinical information of BC patients were downloaded from the TCGA database for a comprehensive analysis of candidate genes. A model consisting of immune-related lncRNAs enriched in BC cancerous tissues was established using the univariate Cox regression analysis and the iterative Lasso Cox regression analysis. The prognostic performance of this model was validated in two independent cohorts (GSE21653 and BC-KR), and compared with known prognostic biomarkers. A nomogram that integrated the immune-related lncRNA signature and clinicopathological factors was constructed to accurately assess the prognostic value of this signature. The correlation between the signature and immune cell infiltration in BC was also analyzed.Results: The Kaplan-Meier analysis showed that the OS of Patients in the low-risk group had significantly better survival than those in the high-risk group, Clinical subgroup analysis showed that the predictive ability was independent of clinicopathological factors. Univariate/multivariate Cox regression analysis showed immune lncRNA signature is an important prognostic factor and an independent prognostic marker. In addition, GSEA and GSVA analysis as well as comprehensive analysis of immune cells showed that the signature was significantly correlated with the infiltration of immune cells.Conclusion: We successfully constructed an immune-associated lncRNA signature that can accurately predict BC prognosis.


Sign in / Sign up

Export Citation Format

Share Document