scholarly journals Prognostic value and immune infiltration of novel signatures in colon cancer microenvironment

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yilin Lin ◽  
Xiaoxian Pan ◽  
Zhihua Chen ◽  
Suyong Lin ◽  
Zhanlong Shen ◽  
...  

Abstract Background Growing evidence has shown that the prognosis for colon cancer depends on changes in microenvironment. The purpose of this study was to elucidate the prognostic value of long noncoding RNAs (lncRNAs) related to immune microenvironment (IM) in colon cancer. Methods Single sample gene set enrichment analysis (ssGSEA) was used to identify the subtypes of colon cancer based on the immune genomes of 29 immune signatures. Cox regression analysis identified a lncRNA signatures associated with immune infiltration. The Tumor Immune Estimation Resource database was used to analyze immune cell content. Results Colon cancer samples were divided into three subtypes by unsupervised cluster analysis. Cox regression analysis identified an immune infiltration-related 5-lncRNA signature. This signature combined with clinical factors can effectively improve the predictive ability for the overall survival (OS) of colon cancer. At the same time, we found that the expression of H19 affects the content of B cells and macrophages in the microenvironment of colon cancer and affects the prognosis of colon cancer. Finally, we constructed the H19 regulatory network and further analyzed the possible mechanisms. We found that knocking down the expression of H19 can significantly inhibit the expression of CCND1 and VEGFA. At the same time, the immunohistochemical assay found that the expression of CCND1 and VEGFA protein was significantly positively correlated with the infiltration of M2 type macrophages. Conclusion The findings may help to formulate clinical strategies and understand the underlying mechanisms of H19 regulation. H19 may be a biomarker for targeted treatment of colon cancer.

2021 ◽  
Vol 12 ◽  
Author(s):  
Guomin Wu ◽  
Qihao Wang ◽  
Ting Zhu ◽  
Linhai Fu ◽  
Zhupeng Li ◽  
...  

This study aimed to establish a prognostic risk model for lung adenocarcinoma (LUAD). We firstly divided 535 LUAD samples in TCGA-LUAD into high-, medium-, and low-immune infiltration groups by consensus clustering analysis according to immunological competence assessment by single-sample gene set enrichment analysis (ssGSEA). Profile of long non-coding RNAs (lncRNAs) in normal samples and LUAD samples in TCGA was used for a differential expression analysis in the high- and low-immune infiltration groups. A total of 1,570 immune-related differential lncRNAs in LUAD were obtained by intersecting the above results. Afterward, univariate COX regression analysis and multivariate stepwise COX regression analysis were conducted to screen prognosis-related lncRNAs, and an eight-immune-related-lncRNA prognostic signature was finally acquired (AL365181.2, AC012213.4, DRAIC, MRGPRG-AS1, AP002478.1, AC092168.2, FAM30A, and LINC02412). Kaplan–Meier analysis and ROC analysis indicated that the eight-lncRNA-based model was accurate to predict the prognosis of LUAD patients. Simultaneously, univariate COX regression analysis and multivariate COX regression analysis were undertaken on clinical features and risk scores. It was illustrated that the risk score was a prognostic factor independent from clinical features. Moreover, immune data of LUAD in the TIMER database were analyzed. The eight-immune-related-lncRNA prognostic signature was related to the infiltration of B cells, CD4+ T cells, and dendritic cells. GSEA enrichment analysis revealed significant differences in high- and low-risk groups in pathways like pentose phosphate pathway, ubiquitin mediated proteolysis, and P53 signaling pathway. This study helps to treat LUAD patients and explore molecules related to LUAD immune infiltration to deeply understand the specific mechanism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yudong Cao ◽  
Hecheng Zhu ◽  
Jun Tan ◽  
Wen Yin ◽  
Quanwei Zhou ◽  
...  

IntroductionGlioma is the most common primary cancer of the central nervous system with dismal prognosis. Long noncoding RNAs (lncRNAs) have been discovered to play key roles in tumorigenesis in various cancers, including glioma. Because of the relevance between immune infiltrating and clinical outcome of glioma, identifying immune-related lncRNAs is urgent for better personalized management.Materials and methodsSingle-sample gene set enrichment analysis (ssGSEA) was applied to estimate immune infiltration, and glioma samples were divided into high immune cell infiltration group and low immune cell infiltration group. After screening differentially expressed lncRNAs in two immune groups, least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to construct an immune-related prognostic signature. Additionally, we explored the correlation between immune infiltration and the prognostic signature.ResultsA total of 653 samples were appropriate for further analyses, and 10 lncRNAs were identified as immune-related lncRNAs in glioma. After univariate Cox regression and LASSO Cox regression analysis, six lncRNAs were identified to construct a prognostic signature for glioma, which could be taken as independent prognostic factors in both univariate and multivariate Cox regression analyses. Moreover, risk score was significantly correlated with all the 29 immune-related checkpoint expression (p < 0.05) in ssGSEA except neutrophils (p = 0.43).ConclusionThe study constructed an immune-related prognostic signature for glioma, which contributed to improve clinical outcome prediction and guide immunotherapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Huiling Wang ◽  
Shuo You ◽  
Meng Fang ◽  
Qian Fang

Background. Breast cancer (BC) is the most common malignant tumor in women. The immunophenotype of tumor microenvironment (TME) has shown great therapeutic potential in tumor. Method. The transcriptome was obtained from TCGA and GEO data. Immune infiltration was analyzed by single-sample gene set enrichment (ssGSEA). The immune feature was constructed by Cox regression analysis. In addition, the coexpression of differential expression genes (DEGs) was identified. Through enrichment analysis, the function and pathway of module genes were identified. The somatic mutations related to immune characteristics were analyzed by Maftools. By using the consistency clustering algorithm, the molecular subtypes were constructed, and the overall survival time (OS) was predicted. Results. Immune landscape can be divided into low immune infiltration and high immune infiltration. Cox regression analysis identified seven immune cells as protective factors of BC. In the coexpression modules for DEGs of high and low immune infiltration, module 1 was related to T cells and high immune infiltration. In particular, the area under the curve (AUC) value of hub gene SASH3 was the highest, and the correlation with T cells was stronger in the high immune infiltration. Enrichment analysis found that oxidative stress, T cell aggregation, and apoptosis were observed in high immune infiltration. In addition, TP53 was identified as the most important somatic gene mutation related to immune characteristics. Importantly, we also constructed seven immune cell-based breast cancer subtypes to predict OS. Conclusion. We evaluated the immune landscape of BC and constructed the gene characteristics related to the immune landscape. The potential of T cells and SASH3 in immunotherapy of BC was revealed, which may guide the development of new clinical treatment strategies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Rui Liu ◽  
Ying Shen ◽  
Jinsong Hu ◽  
Xiaman Wang ◽  
Dong Wu ◽  
...  

BackgroundN6-methyladenosine is the most abundant RNA modification, which plays a prominent role in various biology processes, including tumorigenesis and immune regulation. Multiple myeloma (MM) is the second most frequent hematological malignancy.Materials and MethodsTwenty-two m6A RNA methylation regulators were analyzed between MM patients and normal samples. Kaplan–Meier survival analysis and least absolute shrinkage and selection operator (LASSO) Cox regression analysis were employed to construct the risk signature model. Receiver operation characteristic (ROC) curves were used to verify the prognostic and diagnostic efficiency. Immune infiltration level was evaluated by ESTIMATE algorithm and immune-related single-sample gene set enrichment analysis (ssGSEA).ResultsHigh expression of HNRNPC, HNRNPA2B1, and YTHDF2 and low expression of ZC3H13 were associated with poor survival. Based on these four genes, a prognostic risk signature model was established. Multivariate Cox regression analysis demonstrated that the risk score was an independent prognostic factor of MM. Enrichment analysis showed that cell cycle, immune response, MYC, proteasome, and unfold protein reaction were enriched in high-risk MM patients. Furthermore, patients with higher risk score exhibited lower immune scores and lower immune infiltration level.ConclusionThe m6A-based prognostic risk score accurately and robustly predicts the survival of MM patients and is associated with the immune infiltration level, which complements current prediction models and enhances our cognition of immune infiltration.


2021 ◽  
Author(s):  
Yuhao Zhang ◽  
Jiaxin Zhang ◽  
Fengxian Wei ◽  
Haodong Zhang ◽  
Dongdong Wang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC), which carries a very bad prognosis, is a common malignant tumor worldwide. This study aim to identify a pyroptosis-related long non-coding RNA(pyLncRNA) prognostic signature in HCC by integrated bioinformatics analysis. Methods: All expression profiles of HCC were obtained from The Cancer Genome Atlas (TCGA) and pyroptosis-related genes were from the GSEA website. After identified differentially expressed pyLncRNAs, univariate Cox regression and Lasso analysis were used to identify a pyroptosis-related LncRNAs prognositic signature(py-LPS). Internal validation was used to validate the prognostic value of the py-LPS via the Kaplan-Meier(K-M) curve and receiver operating characteristic(ROC) curve. Additional, we established the nomogram and analyzed the correlation between the signature and immune immune infiltration as well as clinical treatment. Result: 7 pyLncRNAs were established the signature for HCC prognosis. K-M curves exhibited the low risk group presented a markedly longer OS than the high. Clinical subgroups analysis based age, gender, grade and stage yielded the similar results. The signature had an independent prognostic value for HCC(p<0.001). Nomogram estimated one-, three- and five-year survival were 0.777, 0.741 and 0.709. Then, gene set enrichment analysis(GSEA) demostrated significant pathways. Futhermore, we found immune cell infiltration and immunotherapy targets was associated with the signature,which could provided clinical recommendations for chemotherapy.Conclusion: In this study, a novel pyroptosis-related LncRNAs porgnostic signature of HCC, correlated with immune infiltration, could predict the survival of HCC patients and give suggestions for clinical treatment.


2021 ◽  
Vol 16 ◽  
Author(s):  
Dongqing Su ◽  
Qianzi Lu ◽  
Yi Pan ◽  
Yao Yu ◽  
Shiyuan Wang ◽  
...  

Background: Breast cancer has plagued women for many years and caused many deaths around the world. Method: In this study, based on the weighted correlation network analysis, univariate Cox regression analysis and least absolute shrinkage and selection operator, 12 immune-related genes were selected to construct the risk score for breast cancer patients. The multivariable Cox regression analysis, gene set enrichment analysis and nomogram were also conducted in this study. Results: Good results were obtained in the survival analysis, enrichment analysis, multivariable Cox regression analysis and immune-related feature analysis. When the risk score model was applied in 22 breast cancer cohorts, the univariate Cox regression analysis demonstrated that the risk score model was significantly associated with overall survival in most of the breast cancer cohorts. Conclusion: Based on these results, we could conclude that the proposed risk score model may be a promising method, and may improve the treatment stratification of breast cancer patients in the future work.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoping Li ◽  
Jishang Chen ◽  
Qihe Yu ◽  
Hui Huang ◽  
Zhuangsheng Liu ◽  
...  

Background: A surge in newly diagnosed breast cancer has overwhelmed the public health system worldwide. Joint effort had beed made to discover the genetic mechanism of these disease globally. Accumulated research has revealed autophagy may act as a vital part in the pathogenesis of breast cancer.Objective: Aim to construct a prognostic model based on autophagy-related lncRNAs and investigate their potential mechanisms in breast cancer.Methods: The transcriptome data and clinical information of patients with breast cancer were obtained from The Cancer Genome Atlas (TCGA) database. Autophagy-related genes were obtained from the Human Autophagy Database (HADb). Long non-coding RNAs (lncRNAs) related to autophagy were acquired through the Pearson correlation analysis. Univariate Cox regression analysis as well as the least absolute shrinkage and selection operator (LASSO) regression analysis were used to identify autophagy-related lncRNAs with prognostic value. We constructed a risk scoring model to assess the prognostic significance of the autophagy-related lncRNAs signatures. The nomogram was then established based on the risk score and clinical indicators. Through the calibration curve, the concordance index (C-index) and receiver operating characteristic (ROC) curve analysis were evaluated to obtain the model's predictive performance. Subgroup analysis was performed to evaluate the differential ability of the model. Subsequently, gene set enrichment analysis was conducted to investigate the potential functions of these lncRNAs.Results: We attained 1,164 breast cancer samples from the TCGA database and 231 autophagy-related genes from the HAD database. Through correlation analysis, 179 autophagy-related lncRNAs were finally identified. Univariate Cox regression analysis and LASSO regression analysis further screened 18 prognosis-associated lncRNAs. The risk scoring model was constructed to divide patients into high-risk and low-risk groups. It was found that the low-risk group had better overall survival (OS) than those of the high-risk group. Then, the nomogram model including age, tumor stage, TNM stage and risk score was established. The evaluation index (C-index: 0.78, 3-year OS AUC: 0.813 and 5-year OS AUC: 0.785) showed that the nomogram had excellent predictive power. Subgroup analysis showed there were difference in OS between high-risk and low-risk patients in different subgroups (stage I-II, ER positive, Her-2 negative and non-TNBC subgroups; all P &lt; 0.05). According to the results of gene set enrichment analysis, these lncRNAs were involved in the regulation of multicellular organismal macromolecule metabolic process in multicellular organisms, nucleotide excision repair, oxidative phosphorylation, and TGF-β signaling pathway.Conclusions: We identified 18 autophagy-related lncRNAs with prognostic value in breast cancer, which may regulate tumor growth and progression in multiple ways.


2021 ◽  
Vol 19 (1) ◽  
pp. 169-190
Author(s):  
Peiyuan Li ◽  
◽  
Gangjie Qiao ◽  
Jian Lu ◽  
Wenbin Ji ◽  
...  

<abstract> <p>Plasmacytoma variant translocation 1 (PVT1) is involved in multiple signaling pathways and plays an important regulatory role in a variety of malignant tumors. However, its role in the prognosis and immune invasion of bladder urothelial carcinoma (BLCA) remains unclear. This study investigated the expression of PVT1 in tumor tissue and its relationship with immune invasion, and determined its prognostic role in patients with BLCA. Patients were identified from the cancer genome atlas (TCGA). The enrichment pathway and function of PVT1 were explained by gene ontology (GO) term analysis, gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA), and the degree of immune cell infiltration was quantified. Kaplan–Meier analysis and Cox regression were used to analyze the correlation between PVT1 and survival rate. PVT1-high BLCA patients had a lower 10-year disease-specific survival (DSS P &lt; 0.05) and overall survival (OS P &lt; 0.05). Multivariate Cox regression analysis showed that PVT1 (high vs. low) (P = 0.004) was an independent prognostic factor. A nomogram was used to predict the effect of PVT1 on the prognosis. PVT1 plays an important role in the progression and prognosis of BLCA and can be used as a medium biomarker to predict survival after cystectomy.</p> </abstract>


2021 ◽  
Vol 8 ◽  
Author(s):  
Jinhui Liu ◽  
Mengting Xu ◽  
Zhipeng Wu ◽  
Yan Yang ◽  
Shuning Yuan ◽  
...  

Increasing numbers of biomarkers have been identified in various cancers. However, biomarkers associated with endometrial carcinoma (EC) remain largely to be explored. In the current research, we downloaded the RNA-seq data and corresponding clinicopathological features from the Cancer Genome Atlas (TCGA) database. We conducted an expression analysis, which resulted in RILPL2 as a novel diagnostic biomarker in EC. The dysregulation of RILPL2 in EC was also validated in multiple datasets. The correlations between clinical features and RILPL2 expression were assessed by logistic regression analysis. Then, Kaplan-Meier analysis, univariate and multivariate Cox regression analysis were performed to estimate prognostic values of RILPL2 in the TCGA cohort, which revealed that increased level of RILPL2 was remarkably associated with better prognosis and could act as an independent prognostic biomarker in patients with EC. Moreover, correlation analysis of RILPL2 and tumor-infiltrating immune cells (TIICs) indicated that RILPL2 might play a critical role in regulating immune cell infiltration in EC and is related to immune response. Besides, high methylation level was a significant cause of low RILPL2 expression in EC. Subsequently, weighted gene co-expression network analysis (WGCNA) and enrichment analysis were conducted to explore the RILPL2-involved underlying oncogenic mechanisms, and the results indicated that RILPL2 mainly regulated cell cycle. In conclusion, our findings provided evidence that downregulation of RILPL2 in EC is an indicator of adverse prognosis and RILPL2 may act as a promising target for the therapeutics of EC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yumei Fan ◽  
Bing Liu ◽  
Fei Chen ◽  
Zhiyuan Song ◽  
Bihui Han ◽  
...  

Lung cancer has the highest death rate among cancers globally. Hepcidin is a fascinating regulator of iron metabolism; however, the prognostic value of hepcidin and its correlation with immune cell infiltration in lung cancer remain unclear. Here, we comprehensively clarified the prognostic value and potential function of hepcidin in lung cancer. Hepcidin expression was significantly increased in lung cancer. High hepcidin expression was associated with sex, age, metastasis, and pathological stage and significantly predicted an unfavorable prognosis in lung cancer patients. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) results suggested that hepcidin is involved in the immune response. Furthermore, hepcidin expression was positively correlated with the infiltration levels of immune cells and the expression of diverse immune cell marker sets. Importantly, hepcidin may affect prognosis partially by regulating immune infiltration in lung cancer patients. Hepcidin may serve as a candidate prognostic biomarker for determining prognosis associated with immune infiltration in lung cancer.


Sign in / Sign up

Export Citation Format

Share Document