scholarly journals Network Pharmacology Analysis and Experiments Validation of the Inhibitory Effect of JianPi Fu Recipe on Colorectal Cancer LoVo Cells Metastasis and Growth

2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Xinyi Lu ◽  
Xingli Wu ◽  
Lin Jing ◽  
Lingjia Tao ◽  
Yingxuan Zhang ◽  
...  

Objective. To analyze the active compounds, potential targets, and diseases of JianPi Fu Recipe (JPFR) based on network pharmacology and bioinformatics and verify the potential biological function and mechanism of JPFR in vitro and in vivo. Methods. Network pharmacology databases including TCMSP, TCM-PTD, TCMID, and DrugBank were used to screen the active compounds and potential drug targets of JPFR. Cytoscape 3.7 software was applied to construct the interaction network between active compounds and potential targets. The DAVID online database analysis was performed to investigate the potential effective diseases and involved signaling pathways according to the results of the GO function and KEGG pathways enrichment analysis. To ensure standardization and maintain interbatch reliability of JPFR, High Performance Liquid Chromatography (HPLC) was used to establish a “chemical fingerprint.” For biological function validation, the effect of JPFR on the proliferation and migration of CRC cells in vitro was investigated by CCK-8 and transwell and wound healing assay, and the effect of JPFR on the growth and metastasis of CRC cells in vivo was detected by building a lung metastasis model in nude mice and in vivo imaging. For the potential mechanism validation, the expressions of MALAT1, PTBP-2, and β-catenin in CRC cells and transplanted CRC tumors were detected by real-time PCR, western blot, and immunohistochemical staining analysis. Results. According to the rules of oral bioavailability (OB) > 30% and drug-likeness (DL) > 0.18, 244 effective compounds in JPFR were screened out, as well as the corresponding 132 potential drug targets. By the analysis of DAVID database, all these key targets were associated closely with the cancer diseases such as prostate cancer, colorectal cancer, bladder cancer, small cell lung cancer, pancreatic cancer, and hepatocellular carcinoma. In addition, multiple signaling pathways were closely related to JPFR, including p53, Wnt, PI3K-Akt, IL-17, HIF-1, p38-MAPK, NF-κB, PD-L1 expression and PD-1 checkpoint pathway, VEGF, JAK-STAT, and Hippo. The systematical analysis showed that various active compounds of JPFR were closely connected with Wnt/β-catenin, EGFR, HIF-1, TGFβ/Smads, and IL6-STAT3 signaling pathway, including kaempferol, isorhamnetin, calycosin, quercetin, medicarpin, phaseol, spinasterol, hederagenin, beta-sitosterol, wighteone, luteolin, and isotrifoliol. For in vitro experiments, the migration and growth of human CRC cells were inhibited by the JPFR extract in a dose-dependent way, and the expression of MALAT1, PTBP-2, β-catenin, MMP7, c-Myc, and Cyclin D1 in CRC cells were downregulated by the JPFR extract in a dose-dependent way. For in vivo metastasis experiments, the numbers of lung metastasis were found to be decreased by the JPFR extract in a dose-dependent manner, and the expressions of metastasis-associated genes including MALAT1, PTBP-2, β-catenin, and MMP7 in the lung metastases were downregulated dose dependently by the JPFR extract. For the orthotopic transplanted tumor experiments, the JPFR extract could inhibit the growth of orthotopic transplanted tumors and downregulate the expression of c-Myc and Cyclin D1 in a dose-dependent manner. Moreover, the JPFR extract could prolong the survival time of tumor-bearing mice in a dose-dependent manner. Conclusions. Through effective network pharmacology analysis, we found that JPFR contains many effective compounds which may directly target cancer-associated signaling pathways. The in vitro and in vivo experiments further confirmed that JPFR could inhibit the growth and metastasis of CRC cells by regulating β-catenin signaling-associated genes or proteins.

2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Xuxing Shen ◽  
Chao Wu ◽  
Meng Lei ◽  
Qing Yan ◽  
Haoyang Zhang ◽  
...  

AbstractCarfilzomib, a second-generation proteasome inhibitor, has significantly improved the survival rate of multiple myeloma (MM) patients, but its clinical application is still restricted by drug resistance and cardiotoxicity. Here, we identified a novel proteasome inhibitor, D395, and assessed its efficacy in treating MM as well as its cardiotoxicity at the preclinical level. The activities of purified and intracellular proteasomes were measured to determine the effect of D395 on the proteasome. CCK-8 and flow cytometry experiments were designed to evaluate the effects of D395 on cell growth and apoptosis. The effects of D395 and carfilzomib on serum enzyme activity, echocardiography features, cardiomyocyte morphology, and hERG channels were also compared. In our study, D395 was highly cytotoxic to MM cell lines and primary MM cells but not normal cells, and it was well tolerated in vivo. Similar to carfilzomib, D395 inhibited osteoclast differentiation in a dose-dependent manner. In particular, D395 exhibited lower cardiotoxicity than carfilzomib in all experiments. In conclusion, D395 is a novel irreversible proteasome inhibitor that has remarkable anti-MM activity and mild cardiotoxicity in vitro and in vivo.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


2007 ◽  
Vol 53 (3) ◽  
pp. 380-390 ◽  
Author(s):  
Pious Thomas ◽  
Sima Kumari ◽  
Ganiga K. Swarna ◽  
T.K.S. Gowda

Fourteen distinct bacterial clones were isolated from surface-sterilized shoot tips (~1 cm) of papaya (Carica papaya L. ‘Surya’) planted on Murashige and Skoog (MS)-based papaya culture medium (23/50 nos.) during the 2–4 week period following in vitro culturing. These isolates were ascribed to six Gram-negative genera, namely Pantoea ( P. ananatis ), Enterobacter ( E. cloacae ), Brevundimonas ( B. aurantiaca ), Sphingomonas , Methylobacterium ( M. rhodesianum ), and Agrobacterium ( A. tumefaciens ) or two Gram-positive genera, Microbacterium ( M. esteraromaticum ) and Bacillus ( B. benzoevorans ) based on 16S rDNA sequence analysis. Pantoea ananatis was the most frequently isolated organism (70% of the cultures) followed by B. benzoevorans (13%), while others were isolated from single stocks. Bacteria-harboring in vitro cultures often showed a single organism. Pantoea, Enterobacter, and Agrobacterium spp. grew actively on MS-based normal papaya medium, while Microbacterium, Brevundimonas, Bacillus, Sphingomonas, and Methylobacterium spp. failed to grow in the absence of host tissue. Supplying MS medium with tissue extract enhanced the growth of all the organisms in a dose-dependent manner, indicating reliance of the endophyte on its host. Inoculation of papaya seeds with the endophytes (20 h at OD550 = 0.5) led to delayed germination or slow seedling growth initially. However, the inhibition was overcome by 3 months and the seedlings inoculated with Pantoea, Microbacterium, or Sphingomonas spp. displayed significantly better root and shoot growths.


2014 ◽  
Vol 26 (8) ◽  
pp. 1084 ◽  
Author(s):  
Yu-Ting Shen ◽  
Yue-Qiang Song ◽  
Xiao-Qin He ◽  
Fei Zhang ◽  
Xin Huang ◽  
...  

Meiosis produces haploid gametes for sexual reproduction. Triphenyltin chloride (TPTCL) is a highly bioaccumulated and toxic environmental oestrogen; however, its effect on oocyte meiosis remains unknown. We examined the effect of TPTCL on mouse oocyte meiotic maturation in vitro and in vivo. In vitro, TPTCL inhibited germinal vesicle breakdown (GVBD) and first polar body extrusion (PBE) in a dose-dependent manner. The spindle microtubules completely disassembled and the chromosomes condensed after oocytes were exposed to 5 or 10 μg mL–1 TPTCL. γ-Tubulin protein was abnormally localised near chromosomes rather than on the spindle poles. In vivo, mice received TPTCL by oral gavage for 10 days. The general condition of the mice deteriorated and the ovary coefficient was reduced (P < 0.05). The number of secondary and mature ovarian follicles was significantly reduced by 10 mg kg–1 TPTCL (P < 0.05). GVBD decreased in a non-significant, dose-dependent manner (P > 0.05). PBE was inhibited with 10 mg kg–1 TPTCL (P < 0.05). The spindles of in vitro and in vivo metaphase II oocytes were disassembled with 10 mg kg–1 TPTCL. These results suggest that TPTCL seriously affects meiotic maturation by disturbing cell-cycle progression, disturbing the microtubule cytoskeleton and inhibiting follicle development in mouse oocytes.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Ting-Yeu Dai ◽  
Chih-Hua Wang ◽  
Kun-Nan Chen ◽  
I-Nung Huang ◽  
Wei-Sheng Hong ◽  
...  

We assayed the effects of velvet antler (VA) of Formosan sambar deer (Cervus unicolor swinhoei) and its extracts on the anti-infective activity against pathogenicStaphylococcus aureus in vitroandin vivoin this study.In vitrodata indicated that the VA extracts stimulated the proliferation of resting splenocytes and macrophages in a dose-dependent manner up to the highest concentration used (150 μg mL−1). The production of proinflammatory cytokines (TNF-α, IL-6, IL-12) by lipoteichoic acid was significantly suppressed after being cocultured with the VA extracts in a dose-dependent manner. Animal test inS. aureus-infected mice demonstrated that the numbers of bacteria determined in the kidneys and peritoneal lavage fluid ofS. aureus-infected mice were significantly higher than those found in the same organs of mice pretreated with the VA samples. Moreover, the highly enhanced phagocytic activity of macrophages was further verified afterin vitrotreatment with the VA samples. The protective mechanisms of the VA samples might include an immune enhancer and an inflammatory cytokine suppressor.


2010 ◽  
Vol 207 (8) ◽  
pp. 1713-1726 ◽  
Author(s):  
Christopher T.D. Price ◽  
Tasneem Al-Quadan ◽  
Marina Santic ◽  
Snake C. Jones ◽  
Yousef Abu Kwaik

Farnesylation involves covalent linkage of eukaryotic proteins to a lipid moiety to anchor them into membranes, which is essential for the biological function of Ras and other proteins. A large cadre of bacterial effectors is injected into host cells by intravacuolar pathogens through elaborate type III–VII translocation machineries, and many of these effectors are incorporated into the pathogen-containing vacuolar membrane by unknown mechanisms. The Dot/Icm type IV secretion system of Legionella pneumophila injects into host cells the F-box effector Ankyrin B (AnkB), which functions as platforms for the docking of polyubiquitinated proteins to the Legionella-containing vacuole (LCV) to enable intravacuolar proliferation in macrophages and amoeba. We show that farnesylation of AnkB is indispensable for its anchoring to the cytosolic face of the LCV membrane, for its biological function within macrophages and Dictyostelium discoideum, and for intrapulmonary proliferation in mice. Remarkably, the protein farnesyltransferase, RCE-1 (Ras-converting enzyme-1), and isoprenyl cysteine carboxyl methyltransferase host farnesylation enzymes are recruited to the LCV in a Dot/Icm-dependent manner and are essential for the biological function of AnkB. In conclusion, this study shows novel localized recruitment of the host farnesylation machinery and its anchoring of an F-box effector to the LCV membrane, and this is essential for biological function in vitro and in vivo.


1996 ◽  
Vol 63 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Chun W. Wong ◽  
Geoffrey O. Regester ◽  
Geoffrey L. Francis ◽  
Dennis L. Watson

SummaryStudies on the immunomodulatory activities of ruminant milk and colostral whey fractions were undertaken. By comparing with boiled colostral whey in a preliminary experiment, a putative heat-labile immunostimulatory factor for antibody responses was found to be present in ovine colostral whey. Studies were then undertaken in sheep in which the efferent prefemoral lymphatic ducts were cannulated bilaterally, and immune responses in the node were measured following subcutaneous injection in the flank fold of whey protein preparations of various purities. A significant sustained decline of efferent lymphocyte output was observed following injection with autologous crude milk whey or colostral whey preparations, but no changes were observed in interferon-gamma levels in lymph plasma. Two bovine milk whey fractions (lactoperoxidase and lactoferrin) of high purity were compared in bilaterally cannulated sheep. A transient decline over the first 6 h was seen in the efferent lymphocyte output and lymph flow rate after injection of both fractions. A significant difference was seen between the two fractions in interferongamma levels in lymph at 6 h after injection. However, no significant changes in the proportion of the various efferent lymphocyte phenotypes were seen following either treatment. Whereas both fractions showed a significant inhibitory effect in a dose-dependent manner on the proliferative response of T lymphocytes, but not B lymphocytes, to mitogenic stimulation in vitro, no similar changes were seen following in vivo stimulation with these two fractions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Na Liu ◽  
Ping Chen ◽  
Xiaojun Du ◽  
Junxia Sun ◽  
Shasha Han

Abstract Background Obtusofolin is the major active ingredient of Catsia tora L., which possesses the activity of improving eyesight and protecting the optic nerve. Investigation on the interaction of obtusofolin with cytochrome P450 enzymes (CYP450s) could provide a reference for the clinical application of obtusofolin. Methods The effect of obtusofolin on the activity of CYP450s was investigated in the presence of 100 μM obtusofolin in pooled human liver microsomes (HLMs) and fitted with the Lineweaver–Burk plots to characterize the specific inhibition model and kinetic parameters. Results Obtusofolin was found to significantly inhibited the activity of CYP3A4, 2C9, and 2E1. In the presence of 0, 2.5, 5, 10, 25, 50, and 100 μM obtusofolin, the inhibition of these CYP450s showed a dose-dependent manner with the IC50 values of 17.1 ± 0.25, 10.8 ± 0.13, and 15.5 ± 0.16 μM, respectively. The inhibition of CYP3A4 was best fitted with the non-competitive inhibition model with the Ki value of 8.82 μM. While the inhibition of CYP2C9 and 2E1 was competitive with the Ki values of 5.54 and 7.79 μM, respectively. After incubating for 0, 5, 10, 15, and 30 min, the inhibition of CYP3A4 was revealed to be time-dependent with the KI value of 4.87 μM− 1 and the Kinact value of 0.0515 min− 1. Conclusions The in vitro inhibitory effect of obtusofolin implying the potential drug-drug interaction between obtusofolin and corresponding substrates, which needs further in vivo validations.


2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi6-vi6
Author(s):  
Takashi Fujii ◽  
Shun Yamamuro ◽  
Masamichi Takahashi ◽  
Akihide Kondo ◽  
Yoshitaka Narita ◽  
...  

Abstract The therapeutic outcome of glioblastomas (GBMs) is still very poor. Therefore, invention of novel therapeutic methods against GBM cases is considered urgent. The antitumor effects of naturally-derived compounds are attracting attention recently, and therapeutic efficacy of curcumin, a plant-derived compound previously used for multiple purpose, has been indicated in many cancer systems; however, clinical application of curcumin is considered difficult because of its poor bioavailability (under 1 %). Curcumin monoglucuronide (CMG), a water-soluble prodrug of curcumin recently developed for overcoming this weakness, has been demonstrated excellent antitumor effects for several malignancies in vitro and in vivo; therefore, we investigated the effects of CMG against GBM cells. CMG induced cell death of human GBM cells lines (T98G, U251MG, and U87MG) by dose dependent manner by triggering multiple forms of cell death such as apoptosis and perthanatos. Immunoblotting of CMG-treated GBM cell lysates demonstrated activation of multiple cell death signaling. Furthermore, immunodeficiency mice harboring intracerebral U87MG cell xenografts systemically treated by CMG showed significantly prolonged survival compared with control mice. These results suggest CMG would be a novel therapeutic agent against GBM cases.


Sign in / Sign up

Export Citation Format

Share Document