scholarly journals Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila

2010 ◽  
Vol 207 (8) ◽  
pp. 1713-1726 ◽  
Author(s):  
Christopher T.D. Price ◽  
Tasneem Al-Quadan ◽  
Marina Santic ◽  
Snake C. Jones ◽  
Yousef Abu Kwaik

Farnesylation involves covalent linkage of eukaryotic proteins to a lipid moiety to anchor them into membranes, which is essential for the biological function of Ras and other proteins. A large cadre of bacterial effectors is injected into host cells by intravacuolar pathogens through elaborate type III–VII translocation machineries, and many of these effectors are incorporated into the pathogen-containing vacuolar membrane by unknown mechanisms. The Dot/Icm type IV secretion system of Legionella pneumophila injects into host cells the F-box effector Ankyrin B (AnkB), which functions as platforms for the docking of polyubiquitinated proteins to the Legionella-containing vacuole (LCV) to enable intravacuolar proliferation in macrophages and amoeba. We show that farnesylation of AnkB is indispensable for its anchoring to the cytosolic face of the LCV membrane, for its biological function within macrophages and Dictyostelium discoideum, and for intrapulmonary proliferation in mice. Remarkably, the protein farnesyltransferase, RCE-1 (Ras-converting enzyme-1), and isoprenyl cysteine carboxyl methyltransferase host farnesylation enzymes are recruited to the LCV in a Dot/Icm-dependent manner and are essential for the biological function of AnkB. In conclusion, this study shows novel localized recruitment of the host farnesylation machinery and its anchoring of an F-box effector to the LCV membrane, and this is essential for biological function in vitro and in vivo.

2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Xinyi Lu ◽  
Xingli Wu ◽  
Lin Jing ◽  
Lingjia Tao ◽  
Yingxuan Zhang ◽  
...  

Objective. To analyze the active compounds, potential targets, and diseases of JianPi Fu Recipe (JPFR) based on network pharmacology and bioinformatics and verify the potential biological function and mechanism of JPFR in vitro and in vivo. Methods. Network pharmacology databases including TCMSP, TCM-PTD, TCMID, and DrugBank were used to screen the active compounds and potential drug targets of JPFR. Cytoscape 3.7 software was applied to construct the interaction network between active compounds and potential targets. The DAVID online database analysis was performed to investigate the potential effective diseases and involved signaling pathways according to the results of the GO function and KEGG pathways enrichment analysis. To ensure standardization and maintain interbatch reliability of JPFR, High Performance Liquid Chromatography (HPLC) was used to establish a “chemical fingerprint.” For biological function validation, the effect of JPFR on the proliferation and migration of CRC cells in vitro was investigated by CCK-8 and transwell and wound healing assay, and the effect of JPFR on the growth and metastasis of CRC cells in vivo was detected by building a lung metastasis model in nude mice and in vivo imaging. For the potential mechanism validation, the expressions of MALAT1, PTBP-2, and β-catenin in CRC cells and transplanted CRC tumors were detected by real-time PCR, western blot, and immunohistochemical staining analysis. Results. According to the rules of oral bioavailability (OB) > 30% and drug-likeness (DL) > 0.18, 244 effective compounds in JPFR were screened out, as well as the corresponding 132 potential drug targets. By the analysis of DAVID database, all these key targets were associated closely with the cancer diseases such as prostate cancer, colorectal cancer, bladder cancer, small cell lung cancer, pancreatic cancer, and hepatocellular carcinoma. In addition, multiple signaling pathways were closely related to JPFR, including p53, Wnt, PI3K-Akt, IL-17, HIF-1, p38-MAPK, NF-κB, PD-L1 expression and PD-1 checkpoint pathway, VEGF, JAK-STAT, and Hippo. The systematical analysis showed that various active compounds of JPFR were closely connected with Wnt/β-catenin, EGFR, HIF-1, TGFβ/Smads, and IL6-STAT3 signaling pathway, including kaempferol, isorhamnetin, calycosin, quercetin, medicarpin, phaseol, spinasterol, hederagenin, beta-sitosterol, wighteone, luteolin, and isotrifoliol. For in vitro experiments, the migration and growth of human CRC cells were inhibited by the JPFR extract in a dose-dependent way, and the expression of MALAT1, PTBP-2, β-catenin, MMP7, c-Myc, and Cyclin D1 in CRC cells were downregulated by the JPFR extract in a dose-dependent way. For in vivo metastasis experiments, the numbers of lung metastasis were found to be decreased by the JPFR extract in a dose-dependent manner, and the expressions of metastasis-associated genes including MALAT1, PTBP-2, β-catenin, and MMP7 in the lung metastases were downregulated dose dependently by the JPFR extract. For the orthotopic transplanted tumor experiments, the JPFR extract could inhibit the growth of orthotopic transplanted tumors and downregulate the expression of c-Myc and Cyclin D1 in a dose-dependent manner. Moreover, the JPFR extract could prolong the survival time of tumor-bearing mice in a dose-dependent manner. Conclusions. Through effective network pharmacology analysis, we found that JPFR contains many effective compounds which may directly target cancer-associated signaling pathways. The in vitro and in vivo experiments further confirmed that JPFR could inhibit the growth and metastasis of CRC cells by regulating β-catenin signaling-associated genes or proteins.


2017 ◽  
Vol 199 (10) ◽  
Author(s):  
William A. Hendrick ◽  
Mona W. Orr ◽  
Samantha R. Murray ◽  
Vincent T. Lee ◽  
Stephen B. Melville

ABSTRACT The Gram-positive pathogen Clostridium perfringens possesses type IV pili (TFP), which are extracellular fibers that are polymerized from a pool of pilin monomers in the cytoplasmic membrane. Two proteins that are essential for pilus functions are an assembly ATPase (PilB) and an inner membrane core protein (PilC). Two homologues each of PilB and PilC are present in C. perfringens, called PilB1/PilB2 and PilC1/PilC2, respectively, along with four pilin proteins, PilA1 to PilA4. The gene encoding PilA2, which is considered the major pilin based on previous studies, is immediately downstream of the pilB2 and pilC2 genes. Purified PilB2 had ATPase activity, bound zinc, formed hexamers even in the absence of ATP, and bound the second messenger molecule cyclic di-GMP (c-di-GMP). Circular dichroism spectroscopy of purified PilC2 indicated that it retained its predicted degree of alpha-helical secondary structure. Even though no direct interactions between PilB2 and PilC2 could be detected in vivo or in vitro even in the presence of c-di-GMP, high levels of expression of a diguanylate cyclase from C. perfringens (CPE1788) stimulated polymerization of PilA2 in a PilB2- and PilC2-dependent manner. These results suggest that PilB2 activity is controlled by c-di-GMP levels in vivo but that PilB2-PilC2 interactions are either transitory or of low affinity, in contrast to results reported previously from in vivo studies of the PilB1/PilC1 pair in which PilC1 was needed for polar localization of PilB1. This is the first biochemical characterization of a c-di-GMP-dependent assembly ATPase from a Gram-positive bacterium. IMPORTANCE Type IV pili (TFP) are protein fibers involved in important bacterial functions, including motility, adherence to surfaces and host cells, and natural transformation. All clostridia whose genomes have been sequenced show evidence of the presence of TFP. The genetically tractable species Clostridium perfringens was used to study proteins involved in polymerizing the pilin, PilA2, into a pilus. The assembly ATPase PilB2 and its cognate membrane protein partner, PilC2, were purified. PilB2 bound the intracellular signal molecule c-di-GMP. Increased levels of intracellular c-di-GMP led to increased polymerization of PilA2, indicating that Gram-positive bacteria use this molecule to regulate pilus synthesis. These findings provide valuable information for understanding how pathogenic clostridia regulate TFP to cause human diseases.


2016 ◽  
Vol 84 (12) ◽  
pp. 3458-3470 ◽  
Author(s):  
Mike Khan ◽  
Jerome S. Harms ◽  
Fernanda M. Marim ◽  
Leah Armon ◽  
Cherisse L. Hall ◽  
...  

Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host- Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a Δ bpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the Δ bpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase Δ cgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, Δ bpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection.


2021 ◽  
Vol 118 (26) ◽  
pp. e2017130118
Author(s):  
Demba Sarr ◽  
Aaron D. Gingerich ◽  
Nuha Milad Asthiwi ◽  
Faris Almutairi ◽  
Giuseppe A. Sautto ◽  
...  

Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN−) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1−/− mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1β, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN− is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN− diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN− in an H2O2-dependent manner in vitro. OSCN− does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN−, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.


2016 ◽  
Vol 311 (5) ◽  
pp. G852-G858 ◽  
Author(s):  
Matthew G. Varga ◽  
M. Blanca Piazuelo ◽  
Judith Romero-Gallo ◽  
Alberto G. Delgado ◽  
Giovanni Suarez ◽  
...  

Helicobacter pylori ( H. pylori) induces chronic gastritis in humans, and infection can persist for decades. One H. pylori strain-specific constituent that augments disease risk is the cag pathogenicity island. The cag island encodes a type IV secretion system (T4SS) that translocates DNA into host cells. Toll-like receptor 9 (TLR9) is an innate immune receptor that detects hypo-methylated CpG DNA motifs. In this study, we sought to define the role of the H. pylori cag T4SS on TLR9-mediated responses in vivo. H. pylori strain PMSS1 or its cagE − mutant, which fails to assemble a T4SS, were used to infect wild-type or Tlr9 −/− C57BL/6 mice. PMSS1-infected Tlr9 −/− mice developed significantly higher levels of inflammation, despite similar levels of colonization density, compared with PMSS1-infected wild-type mice. These changes were cag dependent, as both mouse genotypes infected with the cagE − mutant only developed minimal inflammation. Tlr9 −/− genotypes did not alter the microbial phenotypes of in vivo-adapted H. pylori strains; therefore, we examined host immunological responses. There were no differences in levels of TH1 or TH2 cytokines in infected mice when stratified by host genotype. However, gastric mucosal levels of IL-17 were significantly increased in infected Tlr9 −/− mice compared with infected wild-type mice, and H. pylori infection of IL-17A −/− mice concordantly led to significantly decreased levels of gastritis. Thus loss of Tlr9 selectively augments the intensity of IL-17-driven immune responses to H. pylori in a cag T4SS-dependent manner. These results suggest that H. pylori utilizes the cag T4SS to manipulate the intensity of the host immune response.


2005 ◽  
Vol 187 (2) ◽  
pp. 611-618 ◽  
Author(s):  
Kelly G. Aukema ◽  
Erin M. Kron ◽  
Timothy J. Herdendorf ◽  
Katrina T. Forest

ABSTRACT PilT is a hexameric ATPase required for type IV pilus retraction in gram-negative bacteria. Retraction of type IV pili mediates intimate attachment to and signaling in host cells, surface motility, biofilm formation, natural transformation, and phage sensitivity. We investigated the in vivo and in vitro roles of each amino acid of the distinct, highly conserved C-terminal AIRNLIRE motif in PilT. Substitution of amino acids A288, I289, L292, and I293 as well as a double substitution of R290 and R294 abolished Pseudomonas aeruginosa PilT function in vivo, as measured by a loss of surface motility and phage sensitivity. When introduced into purified Aquifex aeolicus PilT, substitutions in the AIRNLIRE motif did not disrupt ATPase activity or oligomerization. In contrast, a K136Q substitution in the broadly conserved nucleotide binding motif prevented PilT function in vivo as well as in vitro. We propose that the AIRNLIRE motif forms an amphipathic α helix which transmits signals between a surface-exposed protein interaction site and the ATPase core of PilT, and we recognize a potential functional homology in other type II secretion ATPases.


2013 ◽  
Vol 81 (6) ◽  
pp. 1952-1963 ◽  
Author(s):  
Michael D. Lovelace ◽  
May Lin Yap ◽  
Jana Yip ◽  
William Muller ◽  
Odilia Wijburg ◽  
...  

ABSTRACTPECAM-1/CD31 is known to regulate inflammatory responses and exhibit pro- and anti-inflammatory functions. This study was designed to determine the functional role of PECAM-1 in susceptibility to murine primaryin vivoinfection withSalmonella entericaserovar Typhimurium and inin vitroinflammatory responses of peritoneal macrophages. Lectin profiling showed that cellular PECAM-1 and recombinant human PECAM-1-Ig chimera contain high levels of mannose sugars andN-acetylglucosamine. Consistent with this carbohydrate pattern, both recombinant human and murine PECAM-1-Ig chimeras were shown to bindS. Typhimurium in a dose-dependent mannerin vitro. Using oral and fecal-oral transmission models ofS. Typhimurium SL1344 infection, PECAM-1−/−mice were found to be more resistant toS. Typhimurium infection than wild-type (WT) C57BL/6 mice. While fecal shedding ofS. Typhimurium was comparable in wild-type and PECAM-1−/−mice, the PECAM-1-deficient mice had lower bacterial loads in systemic organs such as liver, spleen, and mesenteric lymph nodes than WT mice, suggesting that extraintestinal dissemination was reduced in the absence of PECAM-1. This reduced bacterial load correlated with reduced tumor necrosis factor (TNF), interleukin-6 (IL-6), and monocyte chemoattractant protein (MCP) levels in sera of PECAM-1−/−mice. Followingin vitrostimulation of macrophages with either wholeS. Typhimurium, lipopolysaccharide (LPS) (Toll-like receptor 4 [TLR4] ligand), or poly(I·C) (TLR3 ligand), production of TNF and IL-6 by PECAM-1−/−macrophages was reduced. Together, these results suggest that PECAM-1 may have multiple functions in resistance to infection withS. Typhimurium, including binding to host cells, extraintestinal spread to deeper tissues, and regulation of inflammatory cytokine production by infected macrophages.


2019 ◽  
Vol 87 (6) ◽  
Author(s):  
Nimrod Nachmias ◽  
Tal Zusman ◽  
Gil Segal

ABSTRACTLegionella pneumophilaand otherLegionellaspecies replicate intracellularly using the Icm/Dot type IV secretion system. InL. pneumophilathis system translocates >300 effectors into host cells and in theLegionellagenus thousands of effectors were identified, the function of most of which is unknown. FourteenL. pneumophilaeffectors were previously shown to specifically bind phosphoinositides (PIs) using dedicated domains. We found that PI-binding domains of effectors are usually not homologous to one another; they are relatively small and located at the effectors' C termini. We used the previously identifiedLegionellaeffector domains (LEDs) with unknown function and the above characteristics of effector PI-binding domains to discover novel PI-binding LEDs. We identified three predicted PI-binding LEDs that are present in 14 L. pneumophilaeffectors and in >200 effectors in theLegionellagenus. Using anin vitroprotein-lipid overlay assay, we found that 11 of theseL. pneumophilaeffectors specifically bind phosphatidylinositol 3-phosphate (PI3P), almost doubling the number ofL. pneumophilaeffectors known to bind PIs. Further, we identified in each of these newly discovered PI3P-binding LEDs conserved, mainly positively charged, amino acids that are essential for PI3P binding. Our results indicate thatLegionellaeffectors harbor unique domains, shared by many effectors, which directly mediate PI3P binding.


2019 ◽  
Author(s):  
Jennifer L. Chlebek ◽  
Hannah Q. Hughes ◽  
Aleksandra S. Ratkiewicz ◽  
Rasman Rayyan ◽  
Joseph Che-Yen Wang ◽  
...  

AbstractBacterial type IV pili are critical for diverse biological processes including horizontal gene transfer, surface sensing, biofilm formation, adherence, motility, and virulence. These dynamic appendages extend and retract from the cell surface. In many type IVa pilus systems, extension occurs through the action of an extension ATPase, often called PilB, while optimal retraction requires the action of a retraction ATPase, PilT. Many type IVa systems also encode a homolog of PilT called PilU. However, the function of this protein has remained unclear becausepilUmutants exhibit inconsistent phenotypes among type IV pilus systems and because it is relatively understudied compared to PilT. Here, we study the type IVa competence pilus ofVibrio choleraeas a model system to define the role of PilU. We show that the ATPase activity of PilU is critical for pilus retraction in PilT Walker A and/or Walker B mutants. PilU does not, however, contribute to pilus retraction in ΔpilTstrains. Thus, these data suggest that PilU is abona fideretraction ATPase that supports pilus retraction in a PilT-dependent manner. We also found that a ΔpilUmutant exhibited a reduction in the force of retraction suggesting that PilU is important for generating maximal retraction forces. Additionalin vitroandin vivodata show that PilT and PilU act as independent homo-hexamers that may form a complex to facilitate pilus retraction. Finally, we demonstrate that the role of PilU as a PilT-dependent retraction ATPase is conserved inAcinetobacter baylyi, suggesting that the role of PilU described here may be broadly applicable to other type IVa pilus systems.Author SummaryAlmost all bacterial species use thin surface appendages called pili to interact with their environments. These structures are critical for the virulence of many pathogens and represent one major way that bacteria share DNA with one another, which contributes to the spread of antibiotic resistance. To carry out their function, pili dynamically extend and retract from the bacterial surface. Here, we show that retraction of pili in some systems is determined by the combined activity of two motor ATPase proteins.


1998 ◽  
Vol 180 (3) ◽  
pp. 505-513 ◽  
Author(s):  
Rafael A. Garduño ◽  
Gary Faulkner ◽  
Mary A. Trevors ◽  
Neeraj Vats ◽  
Paul S. Hoffman

ABSTRACT One of the most abundant proteins synthesized by Legionella pneumophila, particularly during growth in a variety of eukaryotic host cells, is Hsp60, a member of the GroEL family of molecular chaperones. The present study was initiated in response to a growing number of reports suggesting that for some bacteria, includingL. pneumophila, Hsp60 may exist in extracytoplasmic locations. Immunolocalization techniques with Hsp60-specific monoclonal and polyclonal antibodies were used to define the subcellular location and distribution of Hsp60 in L. pneumophila grown in vitro, or in vivo inside of HeLa cells. For comparative purposesEscherichia coli, expressing recombinant L. pneumophila Hsp60, was employed. In contrast to E. coli, where Hsp60 was localized exclusively in the cytoplasm, inL. pneumophila Hsp60 was predominantly associated with the cell envelope, conforming to a distribution pattern typical of surface molecules that included the major outer membrane protein OmpS and lipopolysaccharide. Interestingly, heat-shocked L. pneumophila organisms exhibited decreased overall levels of cell-associated Hsp60 epitopes and increased relative levels of surface epitopes, suggesting that Hsp60 was released by stressed bacteria. Putative secretion of Hsp60 by L. pneumophila was further indicated by the accumulation of Hsp60 in the endosomal space, between replicating intracellular bacteria. These results are consistent with an extracytoplasmic location for Hsp60 in L. pneumophilaand further suggest both the existence of a novel secretion mechanism (not present in E. coli) and a potential role in pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document