scholarly journals A Novel Hybrid Robust Control Design Method for F-16 Aircraft Longitudinal Dynamics

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Vi H. Nguyen ◽  
Thanh T. Tran

This paper presents a hybrid robust control design method for a third-order lower-triangular model of nonlinear dynamic systems in the presence of disturbance. In this paper, a novel control design is presented systematically to synthesize a robust nonlinear feedback controller, called backstepping sliding mode control (BSMC), for the proposed system by a combined approach of backstepping design and sliding mode control. In this approach, a family of the “sliding surface” is introduced in state transformations. Then, a smooth switching function of the sliding surface is introduced and enforced to include in virtual feedbacks and a real control law from the control selection phrases of the backstepping design loop. The achieved control method proves a well-tracking command with asymptotic stability, provides a robustness in the presence of uncertainties, and eliminates completely a chattering phenomenon. The application of flight-path angle control corresponding to the longitudinal dynamics of a high-performance F-16 aircraft simulation model is implemented. Under some assumptions, full nonlinear longitudinal dynamics is reformed into a lower-triangular system for a direct application to formulate a control law. A closed-loop system is achieved for in-flight simulation with different flight profiles for a comparison of the existing methods. Also, an external disturbance on different loading/unloading conditions in flight is applied to verify and validate robustness of the proposed control method.

1998 ◽  
Vol 123 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Mooncheol Won ◽  
J. K. Hedrick

This paper presents a discrete-time adaptive sliding control method for SISO nonlinear systems with a bounded disturbance or unmodeled dynamics. Control and adaptation laws considering input saturation are obtained from approximately discretized nonlinear systems. The developed disturbance adaptation or estimation law is in a discrete-time form, and differs from that of conventional adaptive sliding mode control. The closed-loop poles of the feedback linearized sliding surface and the adaptation error dynamics can easily be placed. It can be shown that the adaptation error dynamics can be decoupled from sliding surface dynamics using the proposed scheme. The proposed control law is applied to speed tracking control of an automatic engine subject to unknown external loads. Simulation and experimental results verify the advantages of the proposed control law.


2021 ◽  
Vol 2021 (2/2021) ◽  
pp. 26-31
Author(s):  
Abdelhani Chaabna ◽  
Samia Semcheddine

The production of biogas enables environmental preservation and sustainable development of rural areas and landlocked regions, as well as diversification of renewable energy resources. This paper is a contribution to improving the production of biogas by Sliding Mode Control (SMC). In the literature there are many models describing the behaviour of reactions during anaerobic digestion and used for control design. The AM2 model is one of the simplest models and can be exploited easily for the control design purposes. In this paper, the reduced model AM2 was exploited to develop and testing by simulations the robust control law SMC. The results obtained have proved the effectiveness of the control method proposed in this paper. A study of the robustness for monitoring and disturbances rejection demonstrated the great interest of this method, which is a non-linear technique and gives very good results in terms of robustness but it presents the problem of chattering. In practice, the chattering of the control action can cause premature wear of the actuators or parts of the system due to heavy oscillations. The chattering phenomenon is caused by the discontinuous term which appears in the control signal. This paper presents a solution to the chattering problem by replacing the discontinuous term with a continuous one. Different Simulations and comparisons are presented and interpreted with satisfactory results.


2013 ◽  
Vol 284-287 ◽  
pp. 2301-2304 ◽  
Author(s):  
Chieh Chuan Feng ◽  
Li Peng Yin ◽  
En Chih Chang

This paper proposes a robust control design based-on integral sliding-mode and H2–norm performance criterion to handle a class of time-varying systems with perturbations including non-linearities and disturbances. The stabilization problems for such systems are studied: integral slid-ing-mode is designated to completely nullify the matched perturbations and, in the meantime, elim-inate the reaching phase to the sliding surface, while H2–norm is a robust linear control measured for system on the sliding surface. In addition to the integral sliding mode control, the contribution of the paper is to implement a parameter-dependent Lyapunov function for H2–norm robust linear control that the overall designed system is less conservative for the system with both matched and unmatched perturbations.


Author(s):  
Xavier Moreau ◽  
Audrey Rizzo ◽  
Alain Oustaloup ◽  
Vincent Hernette

This paper presents a control law for a low frequency active suspension system necessary for the implementation of the strategy defined in the first paper. The structure of the proposed control law is based on cooperation between feedforward and feedback. Feedforward design is based on the vehicle physics. The feedback law is synthesized from CRONE control-design method, french acronym of “Commande Robuste d’Ordre Non Entier” (non integer order robust control). Modeling, robust control-design in frequency-domain, optimal approach, stability analysis and performance are presented in this paper.


Author(s):  
Abdelkrim Brahmi ◽  
Maarouf Saad ◽  
Brahim Brahmi ◽  
Ibrahim El Bojairami ◽  
Guy Gauthier ◽  
...  

In the research put forth, a robust adaptive control method for a nonholonomic mobile manipulator robot, with unknown inertia parameters and disturbances, was proposed. First, the description of the robot’s dynamics model was developed. Thereafter, a novel adaptive sliding mode control was designed, to which all parameters describing involved uncertainties and disturbances were estimated by the adaptive update technique. The proposed control ensures a relatively good system tracking, with all errors converging to zero. Unlike conventional sliding mode controls, the suggested is able to achieve superb performance, without resulting in any chattering problems, along with an extremely fast system trajectories convergence time to equilibrium. The aforementioned characteristics were attainable upon using an innovative reaching law based on potential functions. Furthermore, the Lyapunov approach was used to design the control law and to conduct a global stability analysis. Finally, experimental results and comparative study collected via a 05-DoF mobile manipulator robot, to track a given trajectory, showing the superior efficiency of the proposed control law.


Author(s):  
D W Qian ◽  
X J Liu ◽  
J Q Yi

Based on the sliding mode control methodology, this paper presents a robust control strategy for underactuated systems with mismatched uncertainties. The system consists of a nominal system and the mismatched uncertainties. Since the nominal system can be considered to be made up of several subsystems, a hierarchical structure for the sliding surfaces is designed. This is achieved by taking the sliding surface of one of the subsystems as the first-layer sliding surface and using this sliding surface and the sliding surface of another subsystem to construct the second-layer sliding surface. This process continues till the sliding surfaces of all the subsystems are included. A lumped sliding mode compensator is designed at the last-layer sliding surface. The asymptotic stability of all of the layer sliding surfaces and the sliding surface of each subsystem is proven. Simulation results show the validity of this robust control method through stabilization control of a system consisting of two inverted pendulums and mismatched uncertainties.


2009 ◽  
Vol 22 (2) ◽  
pp. 183-195
Author(s):  
Ján Vittek ◽  
Vladimir Vavrús ◽  
Jozef Buday ◽  
Jozef Kuchta

The paper presents design and verification of Forced Dynamics Control of an actuator with linear permanent magnet synchronous motor. This control method is a relatively new one and offers an accurate realization of a dynamic speed response, which can be selected for given application by the user. In addition to this, the angle between stator current vector and moving part flux vector is maintained mutually perpendicular as it is under conventional vector control. To achieve prescribed speed response derived control law requires estimation of an external force, which is obtained from the set of observers. The first observer works in pseudo-sliding mode and observes speed of moving part while the second one has filtering effect for elimination of the previous one chattering. The overall control system is verified by simulations and experimentally. Preliminary experiments confirmed that the moving part speed response follows the prescribed one fairly closely.


Author(s):  
Atefeh Saedian ◽  
Hassan Zarabadipoor

This paper presents an active backstepping design method for synchronization and anti-synchronization of two identical hyperchaotic Chen systems. The proposed control method, combining backstepping design and active control approach, extends the application of backstepping technique in chaos control. Based on this method, different combinations of controllers can be designed to meet the needs of different applications. Numerical simulations are shown to verify the results.


2012 ◽  
Vol 22 (3) ◽  
pp. 315-342 ◽  
Author(s):  
Samir Zeghlache ◽  
Djamel Saigaa ◽  
Kamel Kara ◽  
Abdelghani Harrag ◽  
Abderrahmen Bouguerra

Abstract In this paper we present a new design method for the fight control of an autonomous quadrotor helicopter based on fuzzy sliding mode control using backstepping approach. Due to the underactuated property of the quadrotor helicopter, the controller can move three positions (x;y; z) of the helicopter and the yaw angle to their desired values and stabilize the pitch and roll angles. A first-order nonlinear sliding surface is obtained using the backstepping technique, on which the developed sliding mode controller is based. Mathematical development for the stability and convergence of the system is presented. The main purpose is to eliminate the chattering phenomenon. Thus we have used a fuzzy logic control to generate the hitting control signal. The performances of the nonlinear control method are evaluated by simulation and the results demonstrate the effectiveness of the proposed control strategy for the quadrotor helicopter in vertical flights.


Author(s):  
Vo Anh Tuan ◽  
Hee-Jun Kang

In this study, a new finite time control method is suggested for robotic manipulators based on nonsingular fast terminal sliding variables and the adaptive super-twisting method. First, to avoid the singularity drawback and achieve the finite time convergence of positional errors with a fast transient response rate, nonsingular fast terminal sliding variables are constructed in the position errors' state space. Next, adaptive tuning laws based on the super-twisting scheme are presented for the switching control law of terminal sliding mode control (TSMC) so that a continuous control law is extended to reject the effects of chattering behavior. Finally, a new finite time control method ensures that sliding motion will take place, regardless of the effects of the perturbations and uncertainties on the robot system. Accordingly, the stabilization and robustness of the suggested control system can be guaranteed with high-precision performance. The robustness issue and the finite time convergence of the suggested system are totally confirmed by the Lyapunov stability principle. In simulation studies, the experimental results exhibit the effectiveness and viability of our proposed scheme for joint position tracking control of a 3DOF PUMA560 robot.


Sign in / Sign up

Export Citation Format

Share Document