scholarly journals IMPROVEMENT OF BIOGAS PRODUCTION IN ANAEROBIC DIGESTION PROCESS

2021 ◽  
Vol 2021 (2/2021) ◽  
pp. 26-31
Author(s):  
Abdelhani Chaabna ◽  
Samia Semcheddine

The production of biogas enables environmental preservation and sustainable development of rural areas and landlocked regions, as well as diversification of renewable energy resources. This paper is a contribution to improving the production of biogas by Sliding Mode Control (SMC). In the literature there are many models describing the behaviour of reactions during anaerobic digestion and used for control design. The AM2 model is one of the simplest models and can be exploited easily for the control design purposes. In this paper, the reduced model AM2 was exploited to develop and testing by simulations the robust control law SMC. The results obtained have proved the effectiveness of the control method proposed in this paper. A study of the robustness for monitoring and disturbances rejection demonstrated the great interest of this method, which is a non-linear technique and gives very good results in terms of robustness but it presents the problem of chattering. In practice, the chattering of the control action can cause premature wear of the actuators or parts of the system due to heavy oscillations. The chattering phenomenon is caused by the discontinuous term which appears in the control signal. This paper presents a solution to the chattering problem by replacing the discontinuous term with a continuous one. Different Simulations and comparisons are presented and interpreted with satisfactory results.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Vi H. Nguyen ◽  
Thanh T. Tran

This paper presents a hybrid robust control design method for a third-order lower-triangular model of nonlinear dynamic systems in the presence of disturbance. In this paper, a novel control design is presented systematically to synthesize a robust nonlinear feedback controller, called backstepping sliding mode control (BSMC), for the proposed system by a combined approach of backstepping design and sliding mode control. In this approach, a family of the “sliding surface” is introduced in state transformations. Then, a smooth switching function of the sliding surface is introduced and enforced to include in virtual feedbacks and a real control law from the control selection phrases of the backstepping design loop. The achieved control method proves a well-tracking command with asymptotic stability, provides a robustness in the presence of uncertainties, and eliminates completely a chattering phenomenon. The application of flight-path angle control corresponding to the longitudinal dynamics of a high-performance F-16 aircraft simulation model is implemented. Under some assumptions, full nonlinear longitudinal dynamics is reformed into a lower-triangular system for a direct application to formulate a control law. A closed-loop system is achieved for in-flight simulation with different flight profiles for a comparison of the existing methods. Also, an external disturbance on different loading/unloading conditions in flight is applied to verify and validate robustness of the proposed control method.


Author(s):  
Abdelkrim Brahmi ◽  
Maarouf Saad ◽  
Brahim Brahmi ◽  
Ibrahim El Bojairami ◽  
Guy Gauthier ◽  
...  

In the research put forth, a robust adaptive control method for a nonholonomic mobile manipulator robot, with unknown inertia parameters and disturbances, was proposed. First, the description of the robot’s dynamics model was developed. Thereafter, a novel adaptive sliding mode control was designed, to which all parameters describing involved uncertainties and disturbances were estimated by the adaptive update technique. The proposed control ensures a relatively good system tracking, with all errors converging to zero. Unlike conventional sliding mode controls, the suggested is able to achieve superb performance, without resulting in any chattering problems, along with an extremely fast system trajectories convergence time to equilibrium. The aforementioned characteristics were attainable upon using an innovative reaching law based on potential functions. Furthermore, the Lyapunov approach was used to design the control law and to conduct a global stability analysis. Finally, experimental results and comparative study collected via a 05-DoF mobile manipulator robot, to track a given trajectory, showing the superior efficiency of the proposed control law.


2009 ◽  
Vol 22 (2) ◽  
pp. 183-195
Author(s):  
Ján Vittek ◽  
Vladimir Vavrús ◽  
Jozef Buday ◽  
Jozef Kuchta

The paper presents design and verification of Forced Dynamics Control of an actuator with linear permanent magnet synchronous motor. This control method is a relatively new one and offers an accurate realization of a dynamic speed response, which can be selected for given application by the user. In addition to this, the angle between stator current vector and moving part flux vector is maintained mutually perpendicular as it is under conventional vector control. To achieve prescribed speed response derived control law requires estimation of an external force, which is obtained from the set of observers. The first observer works in pseudo-sliding mode and observes speed of moving part while the second one has filtering effect for elimination of the previous one chattering. The overall control system is verified by simulations and experimentally. Preliminary experiments confirmed that the moving part speed response follows the prescribed one fairly closely.


1998 ◽  
Vol 123 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Mooncheol Won ◽  
J. K. Hedrick

This paper presents a discrete-time adaptive sliding control method for SISO nonlinear systems with a bounded disturbance or unmodeled dynamics. Control and adaptation laws considering input saturation are obtained from approximately discretized nonlinear systems. The developed disturbance adaptation or estimation law is in a discrete-time form, and differs from that of conventional adaptive sliding mode control. The closed-loop poles of the feedback linearized sliding surface and the adaptation error dynamics can easily be placed. It can be shown that the adaptation error dynamics can be decoupled from sliding surface dynamics using the proposed scheme. The proposed control law is applied to speed tracking control of an automatic engine subject to unknown external loads. Simulation and experimental results verify the advantages of the proposed control law.


Author(s):  
Vo Anh Tuan ◽  
Hee-Jun Kang

In this study, a new finite time control method is suggested for robotic manipulators based on nonsingular fast terminal sliding variables and the adaptive super-twisting method. First, to avoid the singularity drawback and achieve the finite time convergence of positional errors with a fast transient response rate, nonsingular fast terminal sliding variables are constructed in the position errors' state space. Next, adaptive tuning laws based on the super-twisting scheme are presented for the switching control law of terminal sliding mode control (TSMC) so that a continuous control law is extended to reject the effects of chattering behavior. Finally, a new finite time control method ensures that sliding motion will take place, regardless of the effects of the perturbations and uncertainties on the robot system. Accordingly, the stabilization and robustness of the suggested control system can be guaranteed with high-precision performance. The robustness issue and the finite time convergence of the suggested system are totally confirmed by the Lyapunov stability principle. In simulation studies, the experimental results exhibit the effectiveness and viability of our proposed scheme for joint position tracking control of a 3DOF PUMA560 robot.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Shuang Huang ◽  
Xin Wu ◽  
Peixing Li

The yarn vibration causes the yarn tension value to fluctuate, causing a change in the amount of yarn feed, thus causing a deviation of the carpet pile height from the predetermined value. To solve this problem, the sliding mode control algorithm is used to design the sliding mode function and the sliding mode control law. And four variables in the yarn vibration system are controlled by the MATLAB software. For solving the chattering problem of the control law, the sliding mode control law is improved. The fuzzy sliding mode control algorithm based on the quasisliding mode is adopted. The results show that the sliding mode control algorithm is effective, but the sliding mode control force needs to be switched at high frequency and there is severe chattering. The fuzzy sliding mode control algorithm based on quasisliding mode is adopted to achieve better control effect with a smaller force. In addition, the control force does not have high-frequency switching, and the change is relatively stable, which reduces the chattering phenomenon of sliding mode control.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Ehsan Maani Miandoab ◽  
Aghil Yousefi-Koma ◽  
Saeed Hashemnia

Two different control methods, namely, adaptive sliding mode control and impulse damper, are used to control the chaotic vibration of a block on a belt system due to the rate-dependent friction. In the first method, using the sliding mode control technique and based on the Lyapunov stability theory, a sliding surface is determined, and an adaptive control law is established which stabilizes the chaotic response of the system. In the second control method, the vibration of this system is controlled by an impulse damper. In this method, an impulsive force is applied to the system by expanding and contracting the PZT stack according to efficient control law. Numerical simulations demonstrate the effectiveness of both methods in controlling the chaotic vibration of the system. It is shown that the settling time of the controlled system using impulse damper is less than that one controlled by adaptive sliding mode control; however, it needs more control effort.


2015 ◽  
Vol 39 (6) ◽  
pp. 848-860 ◽  
Author(s):  
Zheng Wang

This paper proposes an adaptive smooth second-order sliding mode control law for a class of uncertain non-linear systems. The key point of this control law is ensuring a smooth control signal considering parametric uncertainty and disturbances with unknown bounds. The proposed control method is obtained by introducing a continuous function under the integral and using adaptive gains. The switching function and its derivative are forced to zero in finite time. This is achieved using a smooth control command and without the prior knowledge of upper bound parameters of uncertainties. The finite-time stability is proved based on a quadratic Lyapunov approach and the reaching time is estimated. This structure is used to create a homing guidance law and the efficiency is evaluated via simulations.


2017 ◽  
Vol 13 (1) ◽  
pp. 50-65
Author(s):  
Shibly A. AL-Samarraie ◽  
Mohsin N. Hamzah ◽  
Imad A. Abdulsahib

This paper presents a vibration suppression control design of cantilever beam using two piezoelectric ‎patches. One patch was used as ‎an actuator element, while the other was used as a sensor. The controller design was designed via the balance realization reduction method to elect the reduced order model that is most controllable and observable. ‎the sliding mode observer was designed to estimate six states from the reduced order model but three states are only used in the control law. Estimating a number of states larger than that used is in order to increase the estimation accuracy. Moreover, the state ‎estimation error is proved bounded. An ‎optimal LQR controller is designed then using the ‎estimated states with the sliding mode observer, to ‎suppress the vibration of a smart cantilever ‎beam via the piezoelectric elements. The control spillover problem was avoided, by deriving an avoidance ‎condition, to ensure the ‎asymptotic stability for the proposed vibration ‎control design. ‎The numerical simulations were achieved to ‎test the vibration attenuation ability of the ‎proposed optimal control. For 15 mm initial tip ‎displacement, the piezoelectric actuator found ‎able to reduce the tip displacement to about 0.1 ‎mm after 4s, while it was 1.5 mm in the ‎open loop case.  The current experimental results showed a good performance of the proposed LQR control law and the sliding mode observer, as well a good agreement with theoretical results.


2019 ◽  
Vol 93 ◽  
pp. 03002
Author(s):  
Plamena Zlateva

Biogas production by anaerobic digestion with addition of acetate is considered. Sliding mode control for regulation of the biogas flow rate using the addition of acetate as a control action is proposed. The control design is carried out with direct use of nonlinear model and expert knowledge. Chattering phenomena are avoided by realizing the sliding mode with respect to the control input derivative. The state variables, external disturbance, process output and control input are varied in the known intervals. The performance of the designed sliding mode control is investigated by varying the process set point and the uncertain process parameter, which reflecting the influence of the external disturbance. The excellent performance of presented control is proved through simulation investigations in MATLAB using Simulink.


Sign in / Sign up

Export Citation Format

Share Document