scholarly journals A Review Study on Mechanical Properties of Obtained Products by FDM Method and Metal/Polymer Composite Filament Production

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ümit Çevik ◽  
Menderes Kam

In addition to traditional manufacturing methods, Additive Manufacturing (AM) has become a widespread production technique used in the industry. The Fused Deposition Modeling (FDM) method is one of the most known and widely used additive manufacturing techniques. Due to the fact that polymer-based materials used as depositing materials by the FDM method in printing of parts have insufficient mechanical properties, the technique generally has limited application areas such as model making and prototyping. With the development of polymer-based materials with improved mechanical properties, this technique can be preferred in wider application areas. In this context, analysis of the mechanical properties of the products has an important role in the production method with FDM. This study investigated the mechanical properties of the products obtained by metal/polymer composite filament production and FDM method in detail. It was reviewed current literature on the production of metal/polymer composite filaments with better mechanical properties than filaments compatible with three-dimensional (3D) printers. As a result, it was found that by adding reinforcements of composites in various proportions, products with high mechanical properties can be obtained. Thus, it was predicted that the composite products obtained in this way can be used in wider application areas.

Author(s):  
Pravin R. Kubade ◽  
Hrushikesh B. Kulkarni ◽  
Vinayak C. Gavali

Additive Manufacturing or three-dimensional printing refers to a process of building lighter, stronger three-dimensional parts, manufactured layer by layer. Additive manufacturing uses a computer and CAD software which passes the program to the printer to build the desired shape. Metals, thermoplastic polymers, and ceramics are the preferred materials used for additive manufacturing. Fused deposition modeling is one additive manufacturing technique involving the use of thermoplastic polymer for creating desired shape. Carbon fibers can be added into polymer to strengthen the composite without adding additional weight. Present work deals with the manufacturing of Carbon fiber-reinforced Polylactic Acid composites prepared using fused deposition modeling. Mechanical and thermo-mechanical properties of composites are studied as per ASTM standards and using sophisticated instruments. It is observed that there is enhancement in thermo-mechanical properties of composites due to addition reinforcement which is discussed in detail.


2017 ◽  
Vol 23 (4) ◽  
pp. 804-810 ◽  
Author(s):  
Shiqing Cao ◽  
Dandan Yu ◽  
Weilan Xue ◽  
Zuoxiang Zeng ◽  
Wanyu Zhu

Purpose The purpose of this paper is to prepare a new modified polybutylene terephalate (MPBT) for fused deposition modeling (FDM) to increase the variety of materials compatible with printing. And the printing materials can be used to print components with a complex structure and functional mechanical parts. Design/methodology/approach The MPBT, poly(butylene terephalate-co-isophthalate-co-sebacate) (PBTIS), was prepared for FDM by direct esterification and subsequent polycondensation using terephthalic acid (PTA), isophthalic acid (PIA), sebacic acid (SA) and 1,4-butanediol (BDO). The effects of the content of PIA (20-40 mol%) on the mechanical properties of PBTIS were investigated when the mole per cent of SA (αSA) is zero. The effects of αSA (0-7mol%) on the thermal, rheological and mechanical properties of PBTIS were investigated at nPTA/nPIA = 7/3. A desktop wire drawing and extruding machine was used to fabricate the filaments, whose printability and anisotropy were tested by three-dimensional (3D) printing experiments. Findings A candidate content of PIA introducing into PBT was obtained to be about 30 per cent, and the Izod notched impact strength of PBTIS increased with the increase of αSA. The results showed that the PBTIS (nPTA/nPIA = 7/3, αSA = 3-5mol%) is suitable for FDM. Originality/value New printing materials with good Izod notched impact strength were obtained by introducing PIA and SA (nPTA/nPIA = 7/3, αSA = 3-5 mol%) into PBT and their anisotropy are better than that of ABS.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1154 ◽  
Author(s):  
Wang ◽  
Zhao ◽  
Fuh ◽  
Lee

Additive manufacturing (commonly known as 3D printing) is defined as a family of technologies that deposit and consolidate materials to create a 3D object as opposed to subtractive manufacturing methodologies. Fused deposition modeling (FDM), one of the most popular additive manufacturing techniques, has demonstrated extensive applications in various industries such as medical prosthetics, automotive, and aeronautics. As a thermal process, FDM may introduce internal voids and pores into the fabricated thermoplastics, giving rise to potential reduction on the mechanical properties. This paper aims to investigate the effects of the microscopic pores on the mechanical properties of material fabricated by the FDM process via experiments and micromechanical modeling. More specifically, the three-dimensional microscopic details of the internal pores, such as size, shape, density, and spatial location were quantitatively characterized by X-ray computed tomography (XCT) and, subsequently, experiments were conducted to characterize the mechanical properties of the material. Based on the microscopic details of the pores characterized by XCT, a micromechanical model was proposed to predict the mechanical properties of the material as a function of the porosity (ratio of total volume of the pores over total volume of the material). The prediction results of the mechanical properties were found to be in agreement with the experimental data as well as the existing works. The proposed micromechanical model allows the future designers to predict the elastic properties of the 3D printed material based on the porosity from XCT results. This provides a possibility of saving the experimental cost on destructive testing.


2021 ◽  
Vol 6 (2) ◽  
pp. 119
Author(s):  
Nanang Ali Sutisna ◽  
Rakha Amrillah Fattah

The method of producing items through synchronously depositing material level by level, based on 3D digital models, is named Additive Manufacturing (AM) or 3D-printing. Amongs many AM methods, the Fused Deposition Modeling (FDM) technique along with PLA (Polylactic acid) material is commonly used in additive manufacturing. Until now, the mechanical properties of the AM components could not be calculated or estimated until they've been assembled and checked. In this work, a novel approach is suggested as to how the extrusion process affects the mechanical properties of the printed component to obtain how the parts can be manufactured or printed to achieve improved mechanical properties. This methodology is based on an experimental procedure in which the combination of parameters to achieve an optimal from a manufacturing experiment and its value can be determined, the results obtained show the effect of the extrusion process affects the mechanical properties.


Author(s):  
Tiffaney Flaata ◽  
Gregory J. Michna ◽  
Todd Letcher

Additive manufacturing, the layer-by-layer creation of parts, was initially used for rapid prototyping of new designs. Recently, due to the decrease in the cost and increase in the resolution and strength of additively manufactured parts, additive manufacturing is increasingly being used for production of parts for end-use applications. Fused Deposition Modeling (FDM), a type of 3d printing, is a process of additive manufacturing in which a molten thermoplastic material is extruded to create the desired geometry. Many potential heat transfer applications of 3d printed parts, including the development of additively manufactured heat exchangers, exist. In addition, the availability of metal/polymer composite filaments, first used for applications such as tooling for injection molding applications and to improve wear resistance, could lead to increased performance 3d printed heat exchangers because of the higher thermal conductivity of the material. However, the exploitation of 3d printing for heat transfer applications is hindered by a lack of reliable thermal conductivity data for as-printed materials, which typically include significant void fractions. In this experimental study, an apparatus to measure the effective thermal conductivity of 3d printed composite materials was designed and fabricated. Its ability to accurately measure the thermal conductivity of polymers was validated using a sample of acrylic, whose conductivity is well understood. Finally, the thermal conductivities of various 3d printed polymer, metal/polymer composite, and carbon/polymer composite filaments were measured and are reported in this paper. The materials used are acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), stainless steel/PLA, Brass/PLA, and Bronze/PLA.


2016 ◽  
Vol 674 ◽  
pp. 9-14 ◽  
Author(s):  
Piret Mägi ◽  
Andres Krumme ◽  
Meelis Pohlak

This study explores possible ways to make Additive Manufacturing (AM) a cradle-to-cradle process, that is, use the leftover from one process as the raw material for another process. The main goal of this study is to develop a set of new polymeric blends with innovative properties, suitable for using in 3-D printing of prosthetic limbs using Fused Deposition Modeling (FDM) technology. Sustainable acting is achieved by reusing polymeric material left over from Selective Laser Sintering (SLS) processes for making raw material for FDM processes. Test specimens of polyamide 12 (PA-12) in its virgin form and used- , un-sintered form alongside specimens of used PA blended with TPU, aramid, or graphite, were produced in a micro-injection moulding machine and then tested for their mechanical properties. This paper provides information about the differences in mechanical characteristics of these different material blends. An unexpected but positive finding was that the differences between virgin and recycled PA-12 are insignificant. The aforementioned additives influenced PA-12 by producing specimens that responded with predictable characteristics which is a significant accomplishment as it lays the groundwork for the next stages of the project.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2540 ◽  
Author(s):  
José Linares-Alvelais ◽  
J. Figueroa-Cavazos ◽  
C. Chuck-Hernandez ◽  
Hector Siller ◽  
Ciro Rodríguez ◽  
...  

In this work, we assess the effects of sterilization in materials manufactured using additive manufacturing by employing a sterilization technique used in the food industry. To estimate the feasibility of the hydrostatic high-pressure (HHP) sterilization of biomedical devices, we have evaluated the mechanical properties of specimens produced by commercial 3D printers. Evaluations of the potential advantages and drawbacks of Fused Deposition Modeling (FDM), Digital Light Processing (DLP) technology, and Stereolithography (SLA) were considered for this study due to their widespread availability. Changes in mechanical properties due to the proposed sterilization technique were compared to values derived from the standardized autoclaving methodology. Enhancement of the mechanical properties of samples treated with Hydrostatic high-pressure processing enhanced mechanical properties, with a 30.30% increase in the tensile modulus and a 26.36% increase in the ultimate tensile strength. While traditional autoclaving was shown to systematically reduce the mechanical properties of the materials employed and damages and deformation on the surfaces were observed, HHP offered an alternative for sterilization without employing heat. These results suggest that while forgoing high-temperature for sanitization, HHP processing can be employed to take advantage of the flexibility of additive manufacturing technologies for manufacturing implants, instruments, and other devices.


2020 ◽  
Vol 4 (1) ◽  
pp. 13-24
Author(s):  
Hande Güler Özgül ◽  
Onur Tatlı

Along with the technological developments, it is an expected situation to discover new developed production methods. Additive manufacturing technologies, such as three-dimensional (3D) printers are one of these methods, allowing direct production of parts with complex geometries that cannot be produced by conventional methods. The most popular and inexpensive method among additive manufacturing technologies is FDM (Fused Deposition Modeling) method. This method is particularly interesting for the manufacture of parts with low production volumes. In this study, a 3D-FDM printer with a print volume of 200x200x210 mm has been designed and manufactured.PLA (polylactic acid) test samples having 2 different infill geometries were produced with the 3D printer. Tensile, three-point bending and charpyimpact tests were applied to these samples to investigate the effect of inner filling geometry on mechanical properties. The inner filling geometries are in the form of grid and gyroid. According to the results, while the geometry with the tensile force is "grid", while the geometry with the maximum bending force is "gyroid".It was concluded that different inner filling geometries do not have a significant impact on Charpy impact strength.


Sign in / Sign up

Export Citation Format

Share Document