scholarly journals Numerical Analysis of Fracture Behaviour on Marble Samples Containing Two Flaws

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Lifei Zheng ◽  
Dan Huang ◽  
Xiaoqing Li ◽  
Xuan Hu

Uniaxial compression tests were conducted on marble specimens containing two flaws. There are coplanar flaws and noncoplanar flaws. The inclination angle and spacing of flaws were considered of the coplanar flaws model, and the step angle and spacing of flaws were considered of the noncoplanar flaws model. Strength failure and crack coalescence behaviour were analysed in the paper. The crack evolution process containing microcrack initiation, coalescence, and failure is focused on the rock bridge coalescence and the extent of the pre-existing flaws. There are four forms of rock bridge coalescence: tensile crack coalescence, shear crack coalescence, mixed tensile and shear crack coalescence, and no coalescence. Also, there are four forms of the rock failure mode: tensile failure, shear failure, mixed tensile and shear failure, and split fracture. The outer end of the critical stress values were used to compare with the crack initiation strengths, and the crack initiation strengths were slightly larger than the critical stress. In addition, energy dissipation laws were analysed during the model fracturing process. The crack evolution mechanisms around the pre-existing flaw in the model were revealed by the distribution of microcrack and energy dissipation.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Y. Wang ◽  
C. H. Li

This work is aimed at investigating the effect of freeze-thaw (F-T) cycle on the crack coalescence behavior for granite samples containing two unparallel flaws under uniaxial compression. The flaw geometry in the samples was a combination of an upper inclined flaw with a horizontal flaw underneath. After the uniaxial compression experiments, macroscopic crack pattern description and the mesoscopic posttest CT imaging were used to reveal the effects of F-T cycle on the crack coalescence morphology at the rock bridge area. Results show that the stress–strain curves present a fluctuating growth trend and stress drop phenomenon becomes weaker with increasing F-T cycles. In addition, three different kinds of cracks (tensile-wing cracks, oblique shear cracks, and antiwing cracks) were observed, and the crack coalescence pattern was influenced by the F-T cycles and approach angle. A mix of tensile and shear failure occurs for the sample subjected to weak F-T treatment, and simple tensile failure occurs for the sample subjected to high F-T treatment. Moreover, CT imaging reveals a crack network pattern at the rock bridge area, and it is found that the fracture degree deceases with increasing F-T cycles and increases with the increasing approach angle. It suggests that the rock bridge area can be easily fractured for the sample subjected to high F-T cycles. Results of this study can provide theoretical foundation for the instability predication of fractured rock structures in cold regions.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Huilin Le ◽  
Shaorui Sun ◽  
Chenghua Xu ◽  
Liuyang Li ◽  
Yong Liu

Flaws existing in rock masses are generally unparallel and under three-dimensional stress; however, the mechanical and cracking behaviors of the specimens with two unparallel flaws under triaxial compression have been rarely studied. Therefore, this study conducted comprehensive research on the cracking and coalescence behavior and mechanical properties of specimens with two unparallel flaws under triaxial compression. Triaxial compressive tests were conducted under different confining pressures on rock-like specimens with two preexisting flaws but varying flaw geometries (with respect to the inclination angle of the two unparallel flaws, rock bridge length, and rock bridge inclination angle). Six crack types and eleven coalescence types in the bridge region were observed, and three types of failure modes (tensile failure, shear failure, and tensile-shear failure) were observed in experiments. Test results show that bridge length and bridge inclination angle have an effect on the coalescence pattern, but the influence of bridge inclination angle is larger than that of the bridge length. When the confining pressure is low, coalescence patterns and failure modes of the specimens are greatly affected by flaw geometry, but when confining pressure rose to a certain level, the influence of confining pressure is larger than the effect of flaw geometry. The peak strength of the specimens is affected by flaw geometry and confining pressure. There is a critical value for the bridge length. If the bridge length is larger than the critical value, peak strengths of the samples almost keep constant as the bridge length increases. In addition, as the bridge inclination angle increases, there is an increase in the probability of tensile cracks occurring, and with an increase in the confining pressure, the probability of the occurrence of shear cracks increases.


2017 ◽  
Vol 47 (3) ◽  
pp. 59-80 ◽  
Author(s):  
Taoying Liu ◽  
Ping Cao

AbstractThe behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yinzhu Liu ◽  
Ping Cao ◽  
Liwen He ◽  
Qibin Lin

Much geotechnical construction needs to be carried out under the condition of stepped excavation. However, there is still a lack of research on crack coalescence and failure modes of jointed rock mass under stepped excavation conditions. In order to simulate the stepped excavation test of the real project, the polylactic acid (PLA) material is selected as the filler for the excavation area. The stepped excavation tests are performed on sandstone specimens containing a preexisting joint under different normal load conditions. The dynamic stepped excavation of simulating excavate rock engineering is realised. The constant normal loads during the excavation process are determined to be 80 kN and 100 kN. The influence of the joint inclination on the failure characteristics of the excavation process is analysed. Four typical failure modes are summarised: (a) Mode I: crack coalescence of tensile failure; (b) Mode II: crack coalescence of mixed failure; (c) Mode III: without crack coalescence of mixed failure; (d) Mode IV: without crack coalescence of shear failure. Furthermore, the failure characteristics of the area above the excavation hole and the preexisting joint are analysed. The results show that there are three failure modes: (a) Type I: spalling failure; (b) Type II: shear slip failure; (c) Type III: shear slip and spalling mixed failure.


2020 ◽  
pp. 136943322097177
Author(s):  
Qingfang Lv ◽  
Yi Ding ◽  
Ye Liu

Due to the weak withdrawal capacities of conventional nail joints, using double-headed screw joints as reliable connections in bamboo structures is investigated for the first time. A two-step test program is presented in this paper. In the first step, a double shear test is carried out to investigate the influences of the end distance and bamboo grain direction on the performance of double-headed screw joints. The test shows that there are four main failure modes of double-headed screw joints: double-headed screw shear failure, bearing failure of the hole wall, tensile failure of the bamboo cover panel and shear failure of the cover panel end. In the second step of test, the proposed double-headed screw joints are applied to three single-layer single-span bamboo shear walls, and low-cycle reversed loading tests are applied to the walls with double-headed screw spacings of 50 mm, 100 mm and 150 mm. The failure mode, hysteretic behaviour and energy dissipation performance of the shear walls are discussed. Test results show that the two main failure modes of the bamboo shear walls are the tensile failure of the edge of the wall and shear failure of the double-headed screws. Among the different spacings, the bearing capacity and effective stiffness of the wall with a double-headed screw spacing of 50 mm are the largest, the ductility and energy dissipation capacity of the bamboo shear wall with a double-headed screw spacing of 100 mm are the largest, and the bearing capacity and ductility of the bamboo shear wall with a double-headed screw spacing of 150 mm are the worst.


1952 ◽  
Vol 19 (1) ◽  
pp. 54-56
Author(s):  
F. A. McClintock

Abstract A statistical analysis is developed to show how a microscopic shear failure can result in the apparent tensile failure of polycrystalline iron in rotary bending fatigue tests.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Chi Yao ◽  
Sizhi Zeng ◽  
Jianhua Yang

Anisotropy in strength and deformation of rock mass induced by bedding planes and interlayered structures is a vital problem in rock mechanics and rock engineering. The modified rigid block spring method (RBSM), initially proposed for modeling of isotropic rock, is extended to study the failure process of interlayered rocks under compression with different confining pressures. The modified rigid block spring method is used to simulate the initiation and propagation of microcracks. The Mohr–Coulomb criterion is employed to determine shear failure events and the tensile strength criterion for tensile failure events. Rock materials are replaced by an assembly of Voronoi-based polygonal blocks. To explicitly simulate structural planes and for automatic mesh generation, a multistep point insertion procedure is proposed. A typical experiment on interlayered rocks in literature is simulated using the proposed model. Effects of the orientation of bedding planes with regard to the loading direction on the failure mechanism and strength anisotropy are emphasized. Results indicate that the modified RBSM model succeeds in capturing main failure mechanisms and strength anisotropy induced by interlayered structures and different confining pressures.


2011 ◽  
Vol 99-100 ◽  
pp. 370-374 ◽  
Author(s):  
Yue Hong Qian ◽  
Ting Ting Cheng ◽  
Xiang Ming Cao ◽  
Chun Ming Song

During excavating the problem of unloading is a dynamic one essentially. Assuming the unloading ruled by a simple function and based on the Hamilton principal, the distribution of the stress field nearby the tunnel is obtained. The characteristics of the failure nearby the tunnel are analyzed considering the shear failure and tensile failure. The results show that the main mode of the shear failure, intact and tensile failure occurs from the tunnel. The characteristic of the shear failure, intact and tensile failure are one of the likely failure modes.


2015 ◽  
Vol 9 (1) ◽  
pp. 295-307 ◽  
Author(s):  
Edelis del V. Marquez A. ◽  
William Lobo-Q ◽  
Juan C. Vielma

A comparative study has been done to analyze the behavior of regular steel building structures of 4, 6, 8 and 10 stories, located in seismic zone 5 and soil type S1. The structures were upgraded with different brace configurations according to current Venezuelan codes. A total number of 24 numerical models were analyzed considering non-linear static and incremental dynamic analysis (IDA). The buildings were initially designed as moment resisting frames, and upgraded with six different bracing configurations: concentric braces in “X” and inverted “V”; eccentric braces inverted "V" with horizontal links, inverted “Y” and “X” with vertical links. Short length links were used to ensure a shear failure. The used methodology is based on obtaining the capacity, IDA curves, and bilinear approximations of these curves that allow the determination of yield and ultimate capacity points, in order to estimate important parameters of seismic response: overstrength and ductility; and considering these areas under the curves to estimate elastic deformation energy, energy dissipated by hysteretic damping and equivalent damping. According to the results, the cases with no brace enhancement showed the lowest lateral strength and lateral stiffness and high deformation capacity. On the other hand, the concentric bracing cases, resulted with the highest stiffness and strength and the lowest deformation capacity, therefore they have low ductility and energy dissipation capacity under seismic loading. Structures with links showed intermediate stiffness and strengths, resulting in the best performance in terms of ductility and energy dissipation capacity. The present study provides a better understanding of the benefits of eccentrically braced systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tao Yang ◽  
Yunkang Rao ◽  
Huailin Chen ◽  
Bing Yang ◽  
Jiangrong Hou ◽  
...  

Understanding the failure mechanism and failure modes of multiface slopes in the Wenchuan earthquake can provide a scientific guideline for the slope seismic design. In this paper, the two-dimensional particle flow code (PFC2D) and shaking table tests are used to study the failure mechanism of multiface slopes. The results show that the failure modes of slopes with different moisture content are different under seismic loads. The failure modes of slopes with the moisture content of 5%, 8%, and 12% are shattering-shallow slip, tension-shear slip, and shattering-collapse slip, respectively. The failure mechanism of slopes with different water content is different. In the initial stage of vibration, the slope with 5% moisture content produces tensile cracks on the upper surface of the slope; local shear slip occurs at the foot of the slope and develops rapidly; however, a tensile failure finally occurs. In the slope with 8% moisture content, local shear cracks first develop and then are connected into the slip plane, leading to the formation of the unstable slope. A fracture network first forms in the slope with 12% moisture content under the shear action; uneven dislocation then occurs in the slope during vibration; the whole instability failure finally occurs. In the case of low moisture content, the tensile crack plays a leading role in the failure of the slope. But the influence of shear failure becomes greater with the increase of the moisture content.


Sign in / Sign up

Export Citation Format

Share Document