scholarly journals Radio Propagation Measurements in the Indoor Stairwell Environment at 3.5 and 28 GHz for 5G Wireless Networks

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ahmed Al-Saman ◽  
Marshed Mohamed ◽  
Michael Cheffena

To cover the high demand for wireless data services for different applications in the wireless networks, different frequency bands below 6 GHz and in millimeter-wave (mm-Wave) above 24 GHz are proposed for the fifth generation (5G) of communication. The communication network is supposed to handle, among others, indoor traffic in normal situations as well as during emergencies. The stairway is one of those areas which has less network traffic during normal conditions but increases significantly during emergencies. This paper presents the radio propagation in an indoor stairway environment based on wideband measurements in the line of sight (LOS) at two candidate frequencies for 5G wireless networks, namely, 3.5 GHz and 28 GHz. The path loss, root mean square (RMS) delay spread, K-factor results, and analysis are provided. The close-in free-space reference distance (CI), floating intercept (FI), and the close-in free-space reference distance with frequency weighting (CIF) path loss models are provided. The channel parameters such as the number of clusters, the ray and cluster arrival rates, and the ray and cluster decay factors are also obtained for both frequencies. The findings of the path loss show that the CI, FI, and CIF models fit the measured data well in both frequencies with the path loss exponent identical to the free-space path loss. Based on clustering results, it is found that the cluster decay rates are identical at both bands. The results from this and previous measurements indicate that at least one access point is required for every two sections of the stairway to support good coverage along the stairwell area in 5G wireless networks. Moreover, for 5G systems utilizing mm-Wave frequency bands, one access point for each stair section might be necessary for increased reliability of the 5G network in stairwell environments.

2016 ◽  
Vol 15 (10) ◽  
pp. 6939-6947 ◽  
Author(s):  
Ahmed Iyanda Sulyman ◽  
Abdulmalik Alwarafy ◽  
George R. MacCartney ◽  
Theodore S. Rappaport ◽  
Abdulhameed Alsanie

Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 672 ◽  
Author(s):  
Ahmed Al-Samman ◽  
Tharek Rahman ◽  
MHD Hindia ◽  
Abdusalama Daho ◽  
Effariza Hanafi

It has been widely speculated that the performance of the next generation Internet of Things (IoT) based wireless network should meet a transmission speed on the order of 1000 times more than current wireless networks; energy consumption on the order of 10 times less and access delay of less than 1 ns that will be provided by future 5G systems. To increase the current mobile broadband capacity in future 5G systems, the millimeter wave (mmWave) band will be used with huge amounts of bandwidth available in this band. Hence, to support this wider bandwith at the mmWave band, new radio access technology (RAT) should be provided for 5G systems. The new RAT with symmetry design for downlink and uplink should support different scenarios such as device to device (D2D) and multi-hop communications. This paper presents the path loss models in parking lot environment which represents the multi-end users for future 5G applications. To completely assess the typical performance of 5G wireless network systems across these different frequency bands, it is necessary to develop path loss (PL) models across these wide frequency ranges. The short wavelength of the highest frequency bands provides many scatterings from different objects. Cars and other objects are some examples of scatterings, which represent a critical issue at millimeter-wave bands. This paper presents the large-scale propagation characteristics for millimeter-wave in a parking lot environment. A new physical-based path loss model for parking lots is proposed. The path loss was investigated based on different models. The measurement was conducted at 28 GHz and 38 GHz frequencies for different scenarios. Results showed that the path loss exponent values were approximately identical at 28 GHz and 38 GHz for different scenarios of parking lots. It was found that the proposed compensation factor varied between 10.6 dB and 23.1 dB and between 13.1 and 19.1 in 28 GHz and 38 GHz, respectively. The proposed path loss models showed that more compensation factors are required for more scattering objects, especially at 28 GHz.


2009 ◽  
Vol 62-64 ◽  
pp. 166-171
Author(s):  
J.O. Emagbetere ◽  
F.O. Edeko

The success of wireless local area networks (WLANs) has led to an intense interest among wireless engineers in understanding and predicting radio propagation characteristics within buildings. This paper present radio signal propagation measurement and modeling at 2.4GHz, within a building in the Faculty of Engineering, University of Benin. A base station built around SENAO access point, and a PA24 flat panel directional antenna of 19dBi gain and 17.50 beam-widths was setup for the experimentation. Signals were monitored from the fixed BS using LINKSYS, and NET STUMBLER version 4.0 software run on a Laptop. In this report, the effect of multi-path and delay spread was not considered. The result of the investigation revealed a significant attenuation of the radio signal within the small distance. A path loss exponent of 7.8 to 8.9 on the ground floor, and 2.9 to 5.2 for the 2nd floor were obtained for the period of investigation.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Shuang-de Li ◽  
Yuan-jian Liu ◽  
Le-ke Lin ◽  
Zhong Sheng ◽  
Xiang-chen Sun ◽  
...  

Propagation measurements of wireless channels performed in the tunnel environments at 6 GHz are presented in this paper. Propagation characteristics are simulated and analyzed based on the method of shooting and bouncing ray tracing/image (SBR/IM). A good agreement is achieved between the measured results and simulated results, so the correctness of SBR/IM method has been validated. The measured results and simulated results are analyzed in terms of path loss models, received power, root mean square (RMS) delay spread, Ricean K-factor, and angle of arrival (AOA). The omnidirectional path loss models are characterized based on close-in (CI) free-space reference distance model and the alpha-beta-gamma (ABG) model. Path loss exponents (PLEs) are 1.50–1.74 in line-of-sight (LOS) scenarios and 2.18–2.20 in non-line-of-sight (NLOS) scenarios. Results show that CI model with the reference distance of 1 m provides more accuracy and stability in tunnel scenarios. The RMS delay spread values vary between 2.77 ns and 18.76 ns. Specially, the Poisson distribution best fits the measured data of RMS delay spreads for LOS scenarios and the Gaussian distribution best fits the measured data of RMS delay spreads for NLOS scenarios. Moreover, the normal distribution provides good fits to the Ricean K-factor. The analysis of the abovementioned results from channel measurements and simulations may be utilized for the design of wireless communications of future 5G radio systems at 6 GHz.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ahmed M. Al-samman ◽  
Tharek Abd Rahman ◽  
Marwan Hadri Azmi

This paper presents millimeter wave (mmWave) measurements in an indoor environment. The high demands for the future applications in the 5G system require more capacity. In the microwave band below 6 GHz, most of the available bands are occupied; hence, the microwave band above 6 GHz and mmWave band can be used for the 5G system to cover the bandwidth required for all 5G applications. In this paper, the propagation characteristics at three different bands above 6 GHz (19, 28, and 38 GHz) are investigated in an indoor corridor environment for line of sight (LOS) and non-LOS (NLOS) scenarios. Five different path loss models are studied for this environment, namely, close-in (CI) free space path loss, floating-intercept (FI), frequency attenuation (FA) path loss, alpha-beta-gamma (ABG), and close-in free space reference distance with frequency weighting (CIF) models. Important statistical properties, such as power delay profile (PDP), root mean square (RMS) delay spread, and azimuth angle spread, are obtained and compared for different bands. The results for the path loss model found that the path loss exponent (PLE) and line slope values for all models are less than the free space path loss exponent of 2. The RMS delay spread for all bands is low for the LOS scenario, and only the directed path is contributed in some spatial locations. For the NLOS scenario, the angle of arrival (AOA) is extensively investigated, and the results indicated that the channel propagation for 5G using high directional antenna should be used in the beamforming technique to receive the signal and collect all multipath components from different angles in a particular mobile location.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1261 ◽  
Author(s):  
Lorenzo Rubio ◽  
Rafael P. Torres ◽  
Vicent M. Rodrigo Peñarrocha ◽  
Jesús R. Pérez ◽  
Herman Fernández ◽  
...  

In this paper, path loss and time-dispersion results of the propagation channel in a typical office environment are reported. The results were derived from a channel measurement campaign carried out at 26 GHz in line-of-sight (LOS) and obstructed-LOS (OLOS) conditions. The parameters of both the floating-intercept (FI) and close-in (CI) free space reference distance path loss models were derived using the minimum-mean-squared-error (MMSE). The time-dispersion characteristics of the propagation channel were analyzed through the root-mean-squared (rms) delay-spread and the coherence bandwidth. The results reported here provide better knowledge of the propagation channel features and can be also used to design and evaluate the performance of the next fifth-generation (5G) networks in indoor office environments at the potential 26 GHz frequency band.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 44 ◽  
Author(s):  
Ahmed Mohammed Al-Samman ◽  
Tharek Abd. Rahman ◽  
Tawfik Al-Hadhrami ◽  
Abdusalama Daho ◽  
MHD Nour Hindia ◽  
...  

It has been widely speculated that the performance of the next generation based wireless network should meet a transmission speed on the order of 1000 times more than the current cellular communication systems. The frequency bands above 6 GHz have received significant attention lately as a prospective band for next generation 5G systems. The propagation characteristics for 5G networks need to be fully understood for the 5G system design. This paper presents the channel propagation characteristics for a 5G system in line of sight (LOS) and non-LOS (NLOS) scenarios. The diffraction loss (DL) and frequency drop (FD) are investigated based on collected measurement data. Indoor measurement results obtained using a high-resolution channel sounder equipped with directional horn antennas at 3.5 GHz and 28 GHz as a comparative study of the two bands below and above 6 GHz. The parameters for path loss using different path loss models of single and multi-frequencies have been estimated. The excess delay, root mean square (RMS) delay spread and the power delay profile of received paths are analyzed. The results of the path loss models show that the path loss exponent (PLE) in this indoor environment is less than the free space path loss exponent for LOS scenario at both frequencies. Moreover, the PLE is not frequency dependent. The 3GPP path loss models for single and multi-frequency in LOS scenarios have good performance in terms of PLE that is as reliable as the physically-based models. Based on the proposed models, the diffraction loss at 28 GHz is approximately twice the diffraction loss at 3.5 GHz. The findings of the power delay profile and RMS delay spread indicate that these parameters are comparable for frequency bands below and above 6 GHz.


Author(s):  
Elsi Puspita Sari ◽  
Muhammad Adri ◽  
Khairi Budayawan

Indoor access point (AP) causes the signal quality is reduced because it is hampered by a wall to access the outdoors. Wi-Fi is available for students only 3 APs, and IP availability is limited so it cannot meet all demand access. In addition, all the AP are connected only through the router without using the AP controller that can cause boottleneck. The lack of rule governing UNP Wi-Fi channel Processing, because the Wi-Fi is adjacent even the Wi-Fi uses the same channel so it can causes interference. The purpose of this study is to determine whether available Wi-Fi can cover areas in blocks of Electronical Engineering Department, to know the quality of the signal with InSSIDer  Software Network Stumbler and, to know the results of the speed of traffic data at any Available Wi-Fi the Department of Electronical Engineering, and find out if an Access Point (AP) which affects the quality of the indoor signal to access the outdoors. This study classified into the descriptive study with a qualitative approaching using descriptive methods. Sampling technique in this study were 95 users whose population are Electronical Engineering and Electrical Engineering from 2009 to 2012 generation. The technique of collecting data was using questionnaires and observation. Data were analyzed by using the formula. The analysis shows that the network quality is good and no signal quality percentage below 50 %. Throughput values ​​for the uplink and downlink speeds are not always the same, regardless of the size of the data is same. Free Space Path Loss value’s depends on the distance of the user and access point. The greater the distance of the user to the AP the greater Multi Router Traffic Grapher (MRTG). It can be concluded that the average daily traffic, weekly, monthly, and yearly are differerent for the next daily, weekly, monthly, yearly trafics because it depends on the users and conditions. The Wi-Fi’s facility has a very important role to help students to fullfil their needs. Keywords : Wi-Fi, LAN, Throughput, Free Space Path Loss , MRTG.


Sign in / Sign up

Export Citation Format

Share Document