scholarly journals Natural Film Based on Pectin and Allantoin for Wound Healing: Obtaining, Characterization, and Rat Model

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Karen Zulema Meza Valle ◽  
Rosa A. Saucedo Acuña ◽  
Judith V. Ríos Arana ◽  
Naun Lobo ◽  
Carlos Rodriguez ◽  
...  

Introduction. In our days, several approaches reported the use of natural compounds in medical applications. Among them, pectin and allantoin are nontoxic, biocompatible, and biodegradable; however, its use for possible wound healing therapeutics is still limited. Pectin and allantoin have been applied in pharmaceutical industry and beauty cosmetic and could be also applied as scaffolds for tissue regeneration, wound healing, and so on. The aim of this study was to combine by the first time two natural ingredients to develop a new biomaterial to treat skin injuries in a rat model. Methods. For the hydrogel development, new synthesis parameters were established for the obtaining of the film such as temperature, mixing velocity and time, and drying temperatures as well. To enrich the film, the allantoin concentrations were set at 90 wt% and 100 wt% of pectin used. By in vivo assay, films were tested in wound healing in female Wistar rats, 190 ± 10   g in weight and 2 months aged. Results. The obtained films comprise 2 well-differentiated layers, one layer rich in allantoin, which will be the regenerative layer, and one rich in pectin, which will work as an antimicrobial and protective layer to the wound. These were characterized by swelling kinetics, Fourier transform of the infrared spectrum of absorption (FTIR) spectroscopy, and contact angle. The morphology and topography were determined by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). In vivo assay showed remarkable reduce in a time period in a wound healing process when the film was used. The results show that the use of PA (Pectin-Allantoin) hydrogel reduces the total healing time by 25% approximately. Conclusions. Pectin-Allantoin (PA) film has potential use in medical applications as wound healing material promoting healthy tissue renewal.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 467 ◽  
Author(s):  
Fátima García-Villén ◽  
Angela Faccendini ◽  
Dalila Miele ◽  
Marco Ruggeri ◽  
Rita Sánchez-Espejo ◽  
...  

Background: hydrogels prepared with natural inorganic excipients and spring waters are commonly used in medical hydrology. Design of these clay-based formulations continues to be a field scarcely addressed. Safety and wound healing properties of different fibrous nanoclay/spring water hydrogels were addressed. Methods: in vitro biocompatibility, by means of MTT assay, and wound healing properties were studied. Confocal Laser Scanning Microscopy was used to study the morphology of fibroblasts during the wound healing process. Results: all the ingredients demonstrated to be biocompatible towards fibroblasts. Particularly, the formulation of nanoclays as hydrogels improved biocompatibility with respect to powder samples at the same concentration. Spring waters and hydrogels were even able to promote in vitro fibroblasts motility and, therefore, accelerate wound healing with respect to the control. Conclusion: fibrous nanoclay/spring water hydrogels proved to be skin-biocompatible and to possess a high potential as wound healing formulations. Moreover, these results open new prospects for these ingredients to be used in new therapeutic or cosmetic formulations.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3958
Author(s):  
Karen Zulema Meza-Valle ◽  
Rosa Alicia Saucedo-Acuña ◽  
Karla Lizzette Tovar-Carrillo ◽  
Juan Carlos Cuevas-González ◽  
Erasto Armando Zaragoza-Contreras ◽  
...  

Wound healing is fundamental to restore the tissue integrity. A topical study of the influence of Aloe vera hydrogel, formulated with 1,2-propanediol (propanediol) and triethanolamine (TEA), on the skin wound-healing process was investigated in female Wistar rats. FTIR spectroscopy confirms the presence of carboxylic acid and methyl ester carboxylate groups related with important compounds that confer the hydrogel a good interaction with proteins and growth factors. SEM images show a microstructure and micro-roughness that promote a good adhesion to the wound. Therefore, the swelling kinetics and the contact angle response contribute to the understanding of the in vivo results of the animal test. The results indicated that the Aloe vera hydrogel, prepared with propanediol and TEA, together with its superficial characteristics, improve its rapid penetration without drying out the treated tissue. This produced a positive influence on inflammation, angiogenesis, and wound contraction, reducing 29% the total healing time, reaching the total closure of the wound in 15 days.


2021 ◽  
Vol 22 (8) ◽  
pp. 4087
Author(s):  
Maria Quitério ◽  
Sandra Simões ◽  
Andreia Ascenso ◽  
Manuela Carvalheiro ◽  
Ana Paula Leandro ◽  
...  

Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process—however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.


2017 ◽  
Vol 751 ◽  
pp. 581-585 ◽  
Author(s):  
Piyaporn Kampeerapappun ◽  
Pornpen Siridamrong

The objective of this study was to investigate sericin-polyurethane nanofiber cover (SUC) for wound dressing materials in a rat skin. Sericin-polyurethane blended nanofibers were fabricated by using electrospinning. The composition of 3%w/v polyurethane in ethanol and 19% w/v sericin were blended and electrospun at 15 kV, 20 cm from tip to collector with a feed rate of 6.2 ml/hr. The mats, approximately 1.5 mm thick, were sterile by gamma irradiation with a radiation dose of 15 kGy. The samples of in vitro and in vivo testing were separated into three groups; gauze, polyurethane nanofiber cover (UC), and SUC. In vitro cultured L929 cell lines were investigated with inverted microscope. It was found that cells migrated to SCU. For in vivo tests, the remaining wound in rats was measured on day 2-14 after excision. Compared to original size of wound samples, the size of the wound remained 24% for SUC, 33% for gauze, and 34% for UC at day 8. The sericin, an active agent, contained in SUC mats was about 5 µl at 1.5 ×1.5 cm. It can be concluded that sericin is non-toxic to cells and can promote wound healing process in rats.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laryssa C. Manigat ◽  
Mitchell E. Granade ◽  
Suchet Taori ◽  
Charlotte Anne Miller ◽  
Luke R. Vass ◽  
...  

The diacylglycerol kinases (DGKs) are a family of enzymes responsible for the conversion of diacylglycerol (DAG) to phosphatidic acid (PA). In addition to their primary function in lipid metabolism, DGKs have recently been identified as potential therapeutic targets in multiple cancers, including glioblastoma (GBM) and melanoma. Aside from its tumorigenic properties, DGKα is also a known promoter of T-cell anergy, supporting a role as a recently-recognized T cell checkpoint. In fact, the only significant phenotype previously observed in Dgka knockout (KO) mice is the enhancement of T-cell activity. Herein we reveal a novel, macrophage-specific, immune-regulatory function of DGKα. In bone marrow-derived macrophages (BMDMs) cultured from wild-type (WT) and KO mice, we observed increased responsiveness of KO macrophages to diverse stimuli that yield different phenotypes, including LPS, IL-4, and the chemoattractant MCP-1. Knockdown (KD) of Dgka in a murine macrophage cell line resulted in similar increased responsiveness. Demonstrating in vivo relevance, we observed significantly smaller wounds in Dgka-/- mice with full-thickness cutaneous burns, a complex wound healing process in which macrophages play a key role. The burned area also demonstrated increased numbers of macrophages. In a cortical stab wound model, Dgka-/- brains show increased Iba1+ cell numbers at the needle track versus that in WT brains. Taken together, these findings identify a novel immune-regulatory checkpoint function of DGKα in macrophages with potential implications for wound healing, cancer therapy, and other settings.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3116
Author(s):  
Thien Do ◽  
Tien Nguyen ◽  
Minh Ho ◽  
Nghi Nguyen ◽  
Thai Do ◽  
...  

(1) Background: Wounds with damages to the subcutaneous are difficult to regenerate because of the tissue damages and complications such as bacterial infection. (2) Methods: In this study, we created burn wounds on pigs and investigated the efficacy of three biomaterials: polycaprolactone-gelatin-silver membrane (PCLGelAg) and two commercial burn dressings, Aquacel® Ag and UrgoTulTM silver sulfadiazine. In vitro long-term antibacterial property and in vivo wound healing performance were investigated. Agar diffusion assays were employed to evaluate bacterial inhibition at different time intervals. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill assays were used to compare antibacterial strength among samples. Second-degree burn wounds in the pig model were designed to evaluate the efficiency of all dressings in supporting the wound healing process. (3) Results: The results showed that PCLGelAg membrane was the most effective in killing both Gram-positive and Gram-negative bacteria bacteria with the lowest MBC value. All three dressings (PCLGelAg, Aquacel, and UrgoTul) exhibited bactericidal effect during the first 24 h, supported wound healing as well as prevented infection and inflammation. (4) Conclusions: The results suggest that the PCLGelAg membrane is a practical solution for the treatment of severe burn injury and other infection-related skin complications.


2020 ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


2013 ◽  
Vol 40 (5) ◽  
pp. 496 ◽  
Author(s):  
Jung Dug Yang ◽  
Dong Sik Choi ◽  
Young Kyoo Cho ◽  
Taek Kyun Kim ◽  
Jeong Woo Lee ◽  
...  

2015 ◽  
Vol 77 (6) ◽  
Author(s):  
Nur Adilah Abd Rahman ◽  
Mamman Hassan Buhari ◽  
M. Mahadi Abdul Jamil

Electroporation (EP) is a method of controlling cell function by using pulses of electrical fields to create pore through a cell membrane and causes other substance around it to be absorbed into the cell. Where This method had been led to variety of medical applications. While, microcontact printing (μCP) is a quite useful technique for patterning extracellular matrix as an adhesion molecule for cells that works for controlling the cell growth. This study focuses on reviewing the basic concepts and techniques of electroporation and Microcontact printing, as applied to molecular biology & cancer treatment. The combination of these two technique might be a new technique for wound healing process treatment.


2020 ◽  
Vol 8 (39) ◽  
pp. 9035-9042
Author(s):  
Ming-Yu Wu ◽  
Li Liu ◽  
Qian Zou ◽  
Jong-Kai Leung ◽  
Jia-Li Wang ◽  
...  

An isoquinolinium-based photosensitizer was developed for mitochondrial and bacterial imaging, and used in photodynamic anticancer and antibacterial therapy in a wound healing process in vivo.


Sign in / Sign up

Export Citation Format

Share Document