scholarly journals Protective Effects of Adiponectin against Cobalt Chloride-Induced Apoptosis of Smooth Muscle Cells via cAMP/PKA Pathway

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jingjie Xiao ◽  
Yingying Zhang ◽  
Wei Zhang ◽  
Liang Zhang ◽  
Li Li ◽  
...  

Adiponectin (APN) is an adipokine secreted from adipose tissue and exhibits biological functions such as microcirculation-regulating, hearing-protective, and antiapoptotic. However, the effect of APN on the apoptosis of spiral arterial smooth muscle cells (SMCs) under hypoxic conditions in vitro is not clear. We used cobalt chloride (CoCl2) to simulate chemical hypoxia in vitro, and the SMCs were pretreated with APN and then stimulated with CoCl2. The viability of cells and apoptosis were assessed by CCK-8 and flow cytometry, respectively. Superoxide dismutase (SOD) activity, malondialdehyde (MDA) levels, cAMP level, and the activity of PKA were detected by ELISA. Protein expression and localization were studied by Western blot and immunofluorescence analysis. In the present study, we found that APN exhibits antiapoptosis effects. CoCl2 exhibited decreased cell viability, increased apoptosis and MDA levels, and decreased SOD activity in a concentration-dependent manner, compared with the control group. Moreover, CoCl2 upregulated the expression levels of Bax and cleaved caspase-3 and then downregulated Bcl-2 levels in a time-dependent manner. Compared with the CoCl2 group, the group pretreated with APN had increased cell viability, SOD activity, PKA activity, cAMP level, and PKA expression, but decreased MDA levels and apoptosis. Lastly, the protective effect of APN was blocked by cAMP inhibitor SQ22536 and PKA inhibitor H 89. These results showed that APN protected SMCs against CoCl2-induced hypoxic injury via the cAMP/PKA signaling pathway.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Xue ◽  
Yadong Liu ◽  
Sichong Zhang ◽  
Liucheng Ding ◽  
Baixin Shen ◽  
...  

AbstractThis study aimed to explore the effect of calcitonin gene-related peptide (CGRP) on bladder smooth muscle cells (BSMCs) under high glucose (HG) treatment in vitro. BSMCs from Sprague–Dawley rat bladders were cultured and passaged in vitro. The third-generation cells were cultured and divided into control group, HG group, HG + CGRP group, HG + CGRP + asiatic acid (AA, p-p38 activator) group, CGRP group, AA group, HG + CGRP + CGRP-8-37 (CGRP receptor antagonist) group and HG + LY2228820 (p38 MAPK inhibitor) group. The cell viability, apoptosis, malondialdehyde (MDA) and superoxide dismutase (SOD) levels of BSMCs were observed by the relevant detection kits. The expressions of α-SM-actin, p38 and p-p38 were detected by qRT-PCR or Western blot analysis. Compared with the control group, the cell viability, SOD and α-SM-actin levels of BSMCs were decreased and apoptotic cells, MDA and p-p38 levels were increased after HG treatment, while these changes could be partly reversed when BSMCs were treated with HG and CGRP or LY2228820 together. Moreover, AA or CGRP-8-37 could suppress the effect of CGRP on BSMCs under HG condition. Our data indicate that CGRP protects BSMCs from oxidative stress induced by HG in vitro, and inhibit the α-SM-actin expression decrease through inhibiting the intracellular p38 MAPK signaling pathway.


2018 ◽  
Vol 50 (4) ◽  
pp. 1301-1317 ◽  
Author(s):  
Hongmei Li ◽  
Xian Wang ◽  
Anlong Xu

Background/Aims: Approximately 10%-20% of patients with acute cardiovascular disease who have received coronary intervention suffer restenosis and high inflammation. The stent compound paclitaxel+hirudin was prepared for the treatment of post-intervention restenosis. This study aimed to explore the anti-inflammatory and anti-restenosis mechanisms of paclitaxel+hirudin with regard to the TLR4/MyD88/NF-κB pathway. Methods: Human coronary artery smooth muscle cells (HCASMCs) at 4-6 generations after in vitro culture were used as a model. Lipopolysaccharide (LPS) was used as an inducer to maximally activate the TLR4/MyD88/NF-κB inflammation pathway. After MyD88 knockdown and selective blocking of MyD88 degradation with epoxomicin, the effects of paclitaxel+hirudin stenting on key sites of the TLR4/MyD88/NF-κB pathway were detected using ELISA, Q-PCR, and western blot analysis. Results: LPS at 1 μg/mL for 48 h was the optimal modeling condition for inflammatory activation of HCASMCs. Paclitaxel+hirudin inhibited the levels of key proteins and the gene expression, except for that of the MyD88 gene, of the TLR4-MyD88 pathway. The trend of the effect of paclitaxel+hirudin on the pathway proteins was similar to that of MyD88 knockdown. After epoxomicin intervention, the inhibitory effects of paclitaxel+hirudin on the key genes and proteins of the TLR4-MyD88 pathway were significantly weakened, which even reached pre-intervention levels. Paclitaxel+hirudin affected the MyD88 protein in a dosage-dependent manner. Conclusion: The paclitaxel+hirudin compound promotes MyD88 degradation in the TLR4/MyD88/NF-κB pathway to reduce the activity of TLR4 and NF-κB p65 and to weaken the LPS-initiated inflammatory reactions of IL-1β, IL-6, and TNF-α.


2013 ◽  
Vol 110 (3) ◽  
pp. 391-400 ◽  
Author(s):  
Hyo Jung Kim ◽  
Byung-Yoon Cha ◽  
In Sil Park ◽  
Ji Sun Lim ◽  
Je-Tae Woo ◽  
...  

Liquorice is one of the botanicals used frequently as a traditional medicine in the West and in the East. Platelet-derived growth factor (PDGF)-BB is involved in the development of CVD by inducing abnormal proliferation and migration of vascular smooth muscle cells. In our preliminary study, dehydroglyasperin C (DGC), an active compound of liquorice, showed strong antioxidant activity. Since phytochemicals with antioxidant activities showed beneficial effects on chronic inflammatory diseases, the present study aimed to investigate the effects of DGC on PDGF-induced proliferation and migration of human aortic smooth muscle cells (HASMC). Treatment of HASMC with DGC for 24 h significantly decreased PDGF-induced cell number and DNA synthesis in a dose-dependent manner without any cytotoxicity, as demonstrated by the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide test and thymidine incorporation. Upon cell cycle analysis, DGC blocked the PDGF-induced progression through the G0/G1 to S phase of the cell cycle, and down-regulated the expression of cyclin-dependent kinase (CDK); 2, cyclin E, CDK4 and cyclin D1. Furthermore, DGC significantly attenuated PDGF-stimulated phosphorylation of PDGF receptor-β, phospholipase C-γ1, AKT and extracellular-regulated kinase 1/2, and DGC inhibited cell migration and the dissociation of actin filaments by PDGF. In a rat vascular balloon injury model, DGC suppressed an excessive reduction in luminal diameters and neointimal formation compared with the control group. These results demonstrate the mechanistic basis for the prevention of CVD and the potential therapeutic properties of DGC.


2021 ◽  
Author(s):  
Jorge A. Aguilar-Pineda ◽  
Karin J. Vera-Lopez ◽  
Pallavi Shrivastava ◽  
Rita Nieto-Montesinos ◽  
Miguel A. Chávez-Fumagalli ◽  
...  

SUMMARYDespite the emerging evidence implying early vascular contributions to neurogenerative syndromes, the role of vascular smooth muscle cells (VSMCs) in the pathogenesis of Alzheimer’s disease is still not well understood. Herein, we show that VSMCs in brains of AD patients and the animal model of the disease, are deficient in multiple VSMC-contractile markers which correlated with Tau accumulation in brain arterioles. Ex vivo and in vitro experiments demonstrated that VSMCs undergo dramatic phenotypic transitions under AD-like conditions, adopting pro-inflammatory and synthetic phenotypes. Notably, these changes coincided with Tau hyperphosphorylation at residues Y18, T205 and S262. We also observed that loss of VSMC markers occurred in an age-dependent manner, and that expression of Sm22α and α-Sma proteins were inversely correlated with CD68 and Tau accumulation in brain arterioles of 3xTg-AD mice. Together, these findings further support the contribution of VSMCs in AD pathogenesis, and nominate VSMCs as potential novel therapeutic target in AD.Graphical Abstract


1994 ◽  
Vol 107 (4) ◽  
pp. 1007-1018
Author(s):  
R.I. Clyman ◽  
J. Tannenbaum ◽  
Y.Q. Chen ◽  
D. Cooper ◽  
P.D. Yurchenco ◽  
...  

During permanent closure of the ductus arteriosus, smooth muscle cells migrate through the extracellular matrix (ECM) to form intimal mounds that occlude the vessel's lumen. Smooth muscle cells (SMC) migrate over surfaces coated with collagen in vitro. During the migration SMC also synthesize fibronectin (FN) and laminin (LN). Antibodies against FN and LN inhibit migration on collagen by 30% and 67%, respectively. Because of the apparent importance of LN in migration, we examined how SMC interact with LN and LN fragments (P1, E8, P1′, E1′, E3, E4, and G). Ductus SMC adhere to high concentrations of LN and two fragments of the molecule: P1 and E8. They use a unique set of integrin receptors to bind to LN (alpha 1 beta 1, alpha 6 beta 1 and alpha v beta 3), to P1 (alpha 1 beta 1, alpha v beta 3), and to E8 (alpha 6 beta 1, alpha v beta 3). The alpha v beta 3 integrin binds to the P1 fragment of LN in an RGD peptide-dependent manner, and to the E8 fragment in an RGD-independent manner; the RGD site on the P1 fragment probably is not available to the cell in intact LN. Antibodies against beta 1 integrins completely inhibit SMC adhesion to LN; antibodies against the alpha v beta 3 integrin do not block SMC adhesion to LN, but do prevent cell spreading. LN is also capable of interfering with SMC adhesion to other ECM components. The antiadhesive effect of LN is located in the E1′ domain. Both exogenous and endogenous LN increase SMC motility on collagen I. The locomotion-promoting activity of LN resides in the E1′ antiadhesive domain, and not in its adhesive (P1, E8) domains. LN causes a decrease in the number of focal contacts on collagen I. This might enable SMC to alter their mobility as they move through the extracellular matrix to occlude the ductus arteriosus lumen.


2021 ◽  
Author(s):  
Hui Zheng ◽  
Ying Liu ◽  
Xiaoyue Sun ◽  
Xiaochen Li ◽  
Le Liu ◽  
...  

Abstract Background The phenotypic transformation of arterial vascular smooth muscle cells (VSMC) is one of the key mechanisms in the formation of atherosclerotic plaque. It is unclear whether metformin can inhibit the phenotypic transformation of VSMC. In this study, we observed the effect of metformin on the phenotypic transformation of VSMC in vivo and in vitro and its mechanism.Methods Patients who underwent simple coronary artery bypass grafting (CABG) were divided into non-diabetic(non-DM) group and diabetes (DM) group according to whether diabetes was combined. The miR-21 and VSMC contractile marker protein, smooth muscle contractile protein (αSMA) and synthetic marker protein osteopontin (OPN) were isolated from the internal mammary artery.30 male, clean, and 6 week old wild type C57/BL6J mice were randomly divided into 3 groups:the control group (NC), the diabetes mellitus group (DM) and the metformin intervention group(DM+MET).Diabetic mice model was established by high-fat diet combined with low-dose streptozotocin. Metformin was given by gavage for 8 weeks.The aortic tissue from aortic root to renal artery was retained, miR-21 was determined by real-time PCR, and SMC and OPN were determined by Western Blotting (WB). In vitro, human aortic smooth muscle cells (HA-SMC) were divided into three groups: control group, HG group and HG+ group. The content of miR-21/PTEN/pAKT/Egr-1 protein was determined by WB, the migration ability was determined by MTT and scratch method.Results 1.In vivo, the expression of miR-21 and OPN in the aortic VSMC of DM petients and diabetic mice increased and the intima media thickness increased. Metformin treatment reduced the expression of miR-21 and OPN in the aorta and decreased the thickness of intima media. 2.In vitro, glucose concentration dependently upregulates the expression of miR-21 and osteopontin in HA-SMC.Conclusion Metformin can inhibit the phenotype transformation of VSMC induced by HG, which may inhibit the migration of VSMC through miR-21/PTEN/pAkt/Egr-1.


Stem Cells ◽  
2007 ◽  
Vol 25 (2) ◽  
pp. 271-278 ◽  
Author(s):  
John van Tuyn ◽  
Douwe E. Atsma ◽  
Elizabeth M. Winter ◽  
Ietje van der Velde-van Dijke ◽  
Daniel A. Pijnappels ◽  
...  

1993 ◽  
Vol 265 (5) ◽  
pp. C1371-C1378 ◽  
Author(s):  
M. P. Walsh ◽  
J. D. Carmichael ◽  
G. J. Kargacin

Calponin isolated from chicken gizzard smooth muscle binds in vitro to actin in a Ca(2+)-independent manner and thereby inhibits the actin-activated Mg(2+)-adenosinetriphosphatase of smooth muscle myosin. This inhibition is relieved when calponin is phosphorylated by protein kinase C or Ca2+/calmodulin-dependent protein kinase II, suggesting that calponin is involved in thin filament-associated regulation of smooth muscle contraction. To further examine this possibility, calponin was isolated from toad stomach smooth muscle, characterized biochemically, and localized in intact isolated cells. Toad stomach calponin had the same basic biochemical properties as calponin from other sources. Confocal immunofluorescence microscopy revealed that calponin in intact smooth muscle cells was localized to long filamentous structures that were colabeled by antibodies to actin or tropomyosin. Preservation of the basic biochemical properties of calponin from species to species suggests that these properties are relevant for its in vivo function. Its colocalization with actin and tropomyosin indicates that calponin is associated with the thin filament in intact smooth muscle cells.


Sign in / Sign up

Export Citation Format

Share Document