scholarly journals Protective Role of Coenzyme Q10 in Acute Sepsis-Induced Liver Injury in BALB/c Mice

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Qian-wei Li ◽  
Qin Yang ◽  
Hong-Yang Liu ◽  
Yu-ling Wu ◽  
Yu-Hua Hao ◽  
...  

Sepsis increases the risk of the liver injury development. According to the research works, coenzyme Q10 exhibits hepatoprotective properties in vivo as well as in vitro. Current work aimed at investigating the protective impacts of coenzyme Q10 against liver injury in septic BALB/c mice. The male BALB/c mice were randomly segregated into 4 groups: the control group, the coenzyme Q10 treatment group, the puncture and cecal ligation group, and the coenzyme Q10+cecal ligation and puncture group. Cecal ligation and puncture was conducted after gavagaging the mice with coenzyme Q10 during two weeks. Following 48 h postcecal ligation and puncture, we estimated hepatic biochemical parameters and histopathological changes in hepatic tissue. We evaluated the expression of factors associated with autophagy, pyroptosis, and inflammation. Findings indicated that coenzyme Q10 decreased the plasma levels in alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase in the cecal ligation and puncture group. Coenzyme Q10 significantly inhibited the elevation of sequestosome-1, interleukin-1β, oligomerization domain-like receptor 3 and nucleotide-binding, interleukin-6, and tumor necrosis factor-α expression levels; coenzyme Q10 also increased beclin 1 levels. Coenzyme Q10 might be a significant agent in the treatment of liver injury induced by sepsis.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Weitao Ji ◽  
Hongyun Shi ◽  
Hailin Shen ◽  
Jing Kong ◽  
Jiayi Song ◽  
...  

Krüppel-like factor 4 (KLF4) is a key transcription factor that regulates genes involved in the proliferation or differentiation in different tissues. Apelin plays roles in cardiovascular functions, metabolic disease, and homeostatic disorder. However, the biological function of apelin in liver disease is still ongoing. In this study, we investigated the mechanism of KLF4-mediated protection against acute liver injury via the inhibition of the apelin signaling pathway. Mice were intraperitoneally injected with carbon tetrachloride (CCl4; 0.2 mL dissolved in 100 mL olive oil, 10 mL/kg) to establish an acute liver injury model. A KLF4 expression plasmid was injected through the tail vein 48 h before CCl4 treatment. In cultured LX-2 cells, pAd-KLF4 or siRNA KLF4 was overexpressed or knockdown, and the mRNA and protein levels of apelin were determined. The results showed that the apelin serum level in the CCl4-injected group was higher than that of control group, and the expression of apelin in the liver tissues was elevated while KLF4 expression was decreased in the CCl4-injected group compared to the KLF4-plasmid-injected group. HE staining revealed serious hepatocellular steatosis in the CCl4-injected mice, and KLF4 alleviated this steatosis in the mice injected with KLF4 plasmid. In vitro experiments showed that tumor necrosis factor-alpha (TNF-α) could downregulate the transcription and translation levels of apelin in LX-2 cells and also upregulate KLF4 mRNA and protein expression. RT-PCR and Western blotting showed that the overexpression of KLF4 markedly decreased basal apelin expression, but knockdown of KLF4 restored apelin expression in TNF-α-treated LX-2 cells. These in vivo and in vitro experiments suggest that KLF4 plays a key role in inhibiting hepatocellular steatosis in acute liver injury, and that its mechanism might be the inhibition of the apelin signaling pathway.


2020 ◽  
Vol 126 (4) ◽  
pp. 471-485 ◽  
Author(s):  
Zhao Li ◽  
Mingzhu Yin ◽  
Haifeng Zhang ◽  
Weiming Ni ◽  
Richard W. Pierce ◽  
...  

Rationale: BMX (bone marrow kinase on the X chromosome) is highly expressed in the arterial endothelium from the embryonic stage to the adult stage in mice. It is also expressed in microvessels and the lymphatics in response to pathological stimuli. However, its role in endothelial permeability and sepsis remains unknown. Objective: We aimed to delineate the function of BMX in thrombin-mediated endothelial permeability and the vascular leakage that occurs with sepsis in cecal ligation and puncture models. Methods and Results: The cecal ligation and puncture model was applied to WT (wild type) and BMX-KO (BMX global knockout) mice to induce sepsis. Meanwhile, the electric cell-substrate impedance sensing assay was used to detect transendothelial electrical resistance in vitro and, the modified Miles assay was used to evaluate vascular leakage in vivo. We showed that BMX loss caused lung injury and inflammation in early cecal ligation and puncture–induced sepsis. Disruption of BMX increased thrombin-mediated permeability in mice and cultured endothelial cells by 2- to 3-fold. The expression of BMX in macrophages, neutrophils, platelets, and lung epithelial cells was undetectable compared with that in endothelial cells, indicating that endothelium dysfunction, rather than leukocyte and platelet dysfunction, was involved in vascular permeability and sepsis. Mechanistically, biochemical and cellular analyses demonstrated that BMX specifically repressed thrombin-PAR1 (protease-activated receptor-1) signaling in endothelial cells by directly phosphorylating PAR1 and promoting its internalization and deactivation. Importantly, pretreatment with the selective PAR1 antagonist SCH79797 rescued BMX loss-mediated endothelial permeability and pulmonary leakage in early cecal ligation and puncture–induced sepsis. Conclusions: Acting as a negative regulator of PAR1, BMX promotes PAR1 internalization and signal inactivation through PAR1 phosphorylation. Moreover, BMX-mediated PAR1 internalization attenuates endothelial permeability to protect vascular leakage during early sepsis.


2000 ◽  
Vol 68 (11) ◽  
pp. 6108-6114 ◽  
Author(s):  
M. L. Steinhauser ◽  
C. M. Hogaboam ◽  
A. Matsukawa ◽  
N. W. Lukacs ◽  
R. M. Strieter ◽  
...  

ABSTRACT Previous studies have suggested that the C-C chemokine C10 is involved in the chronic stages of host defense reactions. The present study addressed the role of C10 in a murine model of septic peritonitis, induced by cecal ligation and puncture (CLP). Unlike other C-C chemokines, C10 levels in the peritoneal wash were increased approximately 30-fold above baseline levels at 48 h after CLP surgery. Immunoneutralization of peritoneal C10 levels with polyclonal anti-C10 antiserum during CLP-induced peritonitis negatively impacted mouse survival over 4 days. In contrast, when 500 ng of recombinant murine C10 was administered immediately after CLP surgery, the 4-day survival rate increased from 20% to over 60%. The C10 therapy appeared to facilitate a rapid and significant enhancement of the levels of tumor necrosis factor alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) and a later increase in interleukin-13 (IL-13) levels in the peritoneal cavity. In vitro studies showed that the combination of IL-1β and C10 markedly augmented TNF-α synthesis by peritoneal macrophages and that C10 synthesis was induced in these cells following their exposure to IL-13. At 24 h after CLP surgery, only 25% of C10-treated mice were bacteremic versus 85% of the control group that exhibited dissemination of bacteria into the circulation. The lack of bacteremia in C10-treated mice appeared to be related, in part, to in vitro evidence that C10 significantly enhanced the bacterial phagocytic activity of peritoneal macrophages. In addition, in vivo evidence suggested that C10 therapy significantly reduced the amount of material that leaked from the damaged gut. Taken together, the results of this study demonstrate that the C10 chemokine rapidly promotes disease resolution in the CLP model through its direct effects on the cellular events critically involved in host defense during septic peritonitis.


2021 ◽  
Author(s):  
Ameer Alrubaye ◽  
Majid Motovali-Bashi ◽  
Mehran Miroliaei

Abstract Non-enzymatic glycation of DNA and the associated effects are among pathogenic factors in diabetes mellitus. Natural polyphenols have anti-diabetic activity. Herein, the protective role of one of the phytochemicals, rosmarinic acid (RA), was evaluated in glycation (with fructose) of human DNA and expression of Akt genes in the hippocampus of diabetic rats. In-vitro studies using fluorescence, agarose gel electrophoresis, fluorescence microscopy, and thermal denaturation analyses revealed that glycation causes DNA damage and that RA inhibits it. In-vivo studies were performed by induction of diabetes in rats using streptozotocin. The diabetic rats were given RA daily through gavage feeding. The expression of Akt genes (inhibitors of apoptosis) in the hippocampus was evaluated using RT-qPCR. In diabetic rats, Akt1 and Akt3 were significantly down-regulated compared to the control group. Treating the diabetic rats with RA returned the expression of Akt1 and Akt3 relatively to the normal condition. Past studies have shown that diabetes induces apoptosis in the hippocampal neurons. Given that glycation changes the genes expression and causes cell death, apoptosis of the hippocampal neurons can be due to the glycation of DNA. The results also suggest that RA has reliable potency against the gross modification of DNA under hyperglycemic conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Agnieszka Ścibior ◽  
Dorota Gołębiowska ◽  
Irmina Niedźwiecka

The protective effect of magnesium as magnesium sulfate (MS) on sodium-metavanadate- (SMV-) induced lipid peroxidation (LPO) underin vivoandin vitroconditions was studied. The 18-week SMV intoxication (Group II, 0.125 /mL) enhanced spontaneous malondialdehyde (MDA) generation in rat liver, compared with the control (Group I) and MS-supplemented animals (Group III, 0.06 /mL). Coadministration of SMV with MS (Group IV, SMV-MS) caused a return of the MDA level to the control value range. The effect seems to result from the -independent action and its antagonistic interaction with . Thein vitrotreatment of liver supernatants (LS) obtained from all the tested animals groups with selected exogenous concentrations of or exhibited enhanced MDA production, compared with spontaneously formed MDA. It also showed -stimulating effect on LPO (LS I, Group I) and revealed that the changes in the MDA generation in LS IV (Group IV) might have resulted from the synergistic interactions of with and and from the antagonistic interactions of with and . The findings allow a suggestion that adequate Mg intake for a specific period in the conditions of SMV exposure may prevent V-induced LPO in the liver.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ameer Alrubaye ◽  
Majid Motovali-Bashi ◽  
Mehran Miroliaei

AbstractNon-enzymatic glycation of DNA and the associated effects are among pathogenic factors in diabetes mellitus. Natural polyphenols have anti-diabetic activity. Herein, the protective role of one of the phytochemicals, rosmarinic acid (RA), was evaluated in glycation (with fructose) of human DNA and expression of Akt genes in the hippocampus of diabetic rats. In-vitro studies using fluorescence, agarose gel electrophoresis, fluorescence microscopy, and thermal denaturation analyses revealed that glycation causes DNA damage and that RA inhibits it. In-vivo studies were performed by induction of diabetes in rats using streptozotocin. The diabetic rats were given RA daily through gavage feeding. The expression of Akt genes (inhibitors of apoptosis) in the hippocampus was evaluated using RT-qPCR. In diabetic rats, Akt1 and Akt3 were significantly down-regulated compared to the control group. Treating the diabetic rats with RA returned the expression of Akt1 and Akt3 relatively to the normal condition. Past studies have shown that diabetes induces apoptosis in the hippocampal neurons. Given that glycation changes the genes expression and causes cell death, apoptosis of the hippocampal neurons can be due to the glycation of DNA. The results also suggest that RA has reliable potency against the gross modification of DNA under hyperglycemic conditions.


2015 ◽  
Vol 39 (1-3) ◽  
pp. 239-245 ◽  
Author(s):  
Jicheng Zhang ◽  
Zhiyong Peng ◽  
Donald Maberry ◽  
Jacob Volpe ◽  
Jeremy D. Kimmel ◽  
...  

Background/Aims: Hemoadsorption may improve outcomes for sepsis by removing circulating cytokines. We tested a new sorbent used for hemoadsorption. Methods: CTR sorbent beads were filled into columns of three sizes: CTR0.5 (0.5 ml), CTR1 (1.0 ml) and CTR2 (2.0 ml) and tested using IL-6 capture in vitro. Next, rats were subjected to cecal ligation and puncture and randomly assigned to hemoadsorption with CTR0.5, CTR1, CTR2 or sham treatment. Plasma biomarkers were measured. Results: In vitro, IL-6 removal was accelerated with increasing bead mass. In vivo, TNF, IL-6, IL-10, high mobility group box1, and cystatin C were significantly lower 24 h after CTR2 treatment. Seven-day survival rate was 50, 64, 63, and 73% for the sham, CTR0.5, CTR1, CTR2, respectively. Conclusion: CTR appeared to have a favorable effect on kidney function despite no immediate effects on cytokine removal. However, CTR2 beads did result in a late decrease of cytokines.


1998 ◽  
Vol 274 (3) ◽  
pp. C827-C830 ◽  
Author(s):  
Jesús Ródenas ◽  
M. Teresa Mitjavila ◽  
Teresa Carbonell

Nitric oxide (NO ⋅) has a complex role in the inflammatory response. In this study, we modified the levels of endogenous NO ⋅ in vivo in an acute model of inflammation and evaluated the interactions between NO ⋅ and superoxide anion ([Formula: see text]) produced by polymorphonuclear leukocytes (PMNs) accumulated in the inflamed area. We injected phosphate-buffered saline (control group), 6 μmol ofl- N 5-(1-iminoethyl)ornithine (l-NIO group), or 6 μmol ofl-arginine (l-arginine group) into the granuloma pouch induced by carrageenan in rats.[Formula: see text] plus[Formula: see text] (indicative of NO ⋅ generation) was 188 nmol in the exudate of the control group, but it decreased in the l-NIO group ( P < 0.05) and increased in thel-arginine group ( P < 0.05). When PMNs from treated rats were incubated in vitro, the production of superoxide anion ([Formula: see text]) decreased by ∼46% in thel-arginine group. Furthermore,[Formula: see text] was inhibited in PMNs whenl-arginine was added to the incubation medium before phorbol 12-myristate 13-acetate stimulation but not when added simultaneously. Our results suggest a protective role for NO ⋅ in inflammation, through the inactivation of NADPH oxidase and the consequent impairment of[Formula: see text] production for cell-mediated injury.


1990 ◽  
Vol 29 (03) ◽  
pp. 120-124
Author(s):  
R. P. Baum ◽  
E. Rohrbach ◽  
G. Hör ◽  
B. Kornhuber ◽  
E. Busse

The effect of triiodothyronine (T3) on the differentiation of cultured neuroblastoma (NB) cells was studied after 9 days of treatment with a dose of 10-4 M/106 cells per day. Using phase contrast microscopy, 30-50% of NB cells showed formation of neurites as a morphological sign of cellular differentiation. The initial rise of the mitosis rate was followed by a plateau. Changes in cyclic nucleotide content, in the triphosphates and in the activity of the enzyme ornithine decarboxylase (ODC) were assessed in 2 human and 2 murine cell lines to serve as biochemical parameters of the cell differentiation induced by T3. Whereas the cAMP level increased significantly (3 to 7 fold compared with its initial value), the cGMP value dropped to 30 to 50% of that of the control group. ATP and GTP increased about 200%, the ODC showed a decrease of about 50%. The present studies show a biphasic effect of T3 on neuroblastoma cells: the initial rise of mitotic activity is followed by increased cell differentiation starting from day 4 of the treatment.


Sign in / Sign up

Export Citation Format

Share Document