scholarly journals Human Fat-Derived Mesenchymal Stem Cells Xenogenically Implanted in a Rat Model Show Enhanced New Bone Formation in Maxillary Alveolar Tooth Defects

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Andrew Wofford ◽  
Austin Bow ◽  
Steven Newby ◽  
Seth Brooks ◽  
Rachel Rodriguez ◽  
...  

Background. Due to restorative concerns, bone regenerative therapies have garnered much attention in the field of human oral/maxillofacial surgery. Current treatments using autologous and allogenic bone grafts suffer from inherent challenges, hence the ideal bone replacement therapy is yet to be found. Establishing a model by which MSCs can be placed in a clinically acceptable bone defect to promote bone healing will prove valuable to oral/maxillofacial surgeons. Methods. Human adipose tissue-derived MSCs were seeded onto Gelfoam® and their viability, proliferation, and osteogenic differentiation was evaluated in vitro. Subsequently, the construct was implanted in a rat maxillary alveolar bone defect to assess in vivo bone healing and regeneration. Results. Human MSCs were adhered, proliferated, and uniformly distributed, and underwent osteogenic differentiation on Gelfoam®, comparable with the tissue culture surface. Data confirmed that Gelfoam® could be used as a scaffold for cell attachment and a delivery vehicle to implant MSCs in vivo. Histomorphometric analyses of bones harvested from rats treated with hMSCs showed statistically significant increase in collagen/early bone formation, with cells positive for osteogenic and angiogenic markers in the defect site. This pattern was visible as early as 4 weeks post treatment. Conclusions. Xenogenically implanted human MSCs have the potential to heal an alveolar tooth defect in rats. Gelfoam®, a commonly used clinical biomaterial, can serve as a scaffold to deliver and maintain MSCs to the defect site. Translating this strategy to preclinical animal models provides hope for bone tissue engineering.

2019 ◽  
Author(s):  
Lu Feng ◽  
Jin-fang Zhang ◽  
Liu Shi ◽  
Zheng-meng Yang ◽  
Tian-yi Wu ◽  
...  

AbstractMicroRNAs (miRNAs) have been reported to serve as silencers to repress gene expression at post-transcriptional level. Multiple miRNAs have been demonstrated to play important roles in osteogenesis. MiR-378, a conserved miRNA, was reported to mediate bone metabolism and influence bone development, but the detailed function and underlying mechanism remain obscure. In this study, the miR-378 transgenic (TG) mouse was developed to study the role of miR-378 in osteogenic differentiation as well as bone formation. The abnormal bone tissues and impaired bone quality were displayed in the miR-378 TG mice, and a delayed healing effect was observed during bone fracture of the miR-378 TG mice. The osteogenic differentiation of MSCs derived from this TG mouse was also inhibited. We also found that miR-378 mimics suppressed while anti-miR-378 promoted osteogenesis of human MSCs. Two Wnt family members Wnt6 and Wnt10a were identified as bona fide targets of miR-378, and their expression were decreased by this miRNA, which eventually induced the inactivation of Wnt/β-catenin signaling. Finally, the sh-miR-378 modified MSCs were locally injected into the fracture sites in an established mouse fracture model. The results indicated that miR-378 inhibitor therapy could promote bone formation and stimulate healing process in vivo. In conclude, miR-378 suppressed osteogenesis and bone formation via inactivating Wnt/β-catenin signaling, suggesting miR-378 may be a potential therapeutic target for bone diseases.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 381
Author(s):  
Hyunmin Choi ◽  
Kyu-Hyung Park ◽  
Narae Jung ◽  
June-Sung Shim ◽  
Hong-Seok Moon ◽  
...  

The aim of this study was to investigate the behavior of dental-derived human mesenchymal stem cells (d-hMSCs) in response to differently surface-treated implants and to evaluate the effect of d-hMSCs on local osteogenesis around an implant in vivo. d-hMSCs derived from alveolar bone were established and cultured on machined, sandblasted and acid-etched (SLA)-treated titanium discs with and without osteogenic induction medium. Their morphological and osteogenic potential was assessed by scanning electron microscopy (SEM) and real-time polymerase chain reaction (RT-PCR) via mixing of 5 × 106 of d-hMSCs with 1 mL of Metrigel and 20 μL of gel-cell mixture, which was dispensed into the defect followed by the placement of customized mini-implants (machined, SLA-treated implants) in New Zealand white rabbits. Following healing periods of 2 weeks and 12 weeks, the obtained samples in each group were analyzed radiographically, histomorphometrically and immunohistochemically. The quantitative change in osteogenic differentiation of d-hMSCs was identified according to the type of surface treatment. Radiographic analysis revealed that an increase in new bone formation was statistically significant in the d-hMSCs group. Histomorphometric analysis was in accordance with radiographic analysis, showing the significantly increased new bone formation in the d-hMSCs group regardless of time of sacrifice. Human nuclei A was identified near the area where d-hMSCs were implanted but the level of expression was found to be decreased as time passed. Within the limitations of the present study, in this animal model, the transplantation of d-hMSCs enhanced the new bone formation around an implant and the survival and function of the stem cells was experimentally proven up to 12 weeks post-sacrifice.


2021 ◽  
Vol 22 (3) ◽  
pp. 1169
Author(s):  
Yuhan Chang ◽  
Chih-Chien Hu ◽  
Ying-Yu Wu ◽  
Steve W. N. Ueng ◽  
Chih-Hsiang Chang ◽  
...  

Bacterial infection in orthopedic surgery is challenging because cell wall components released after bactericidal treatment can alter osteoblast and osteoclast activity and impair fracture stability. However, the precise effects and mechanisms whereby cell wall components impair bone healing are unclear. In this study, we characterized the effects of lipopolysaccharide (LPS) on bone healing and osteoclast and osteoblast activity in vitro and in vivo and evaluated the effects of ibudilast, an antagonist of toll-like receptor 4 (TLR4), on LPS-induced changes. In particular, micro-computed tomography was used to reconstruct femoral morphology and analyze callus bone content in a femoral defect mouse model. In the sham-treated group, significant bone bridge and cancellous bone formation were observed after surgery, however, LPS treatment delayed bone bridge and cancellous bone formation. LPS inhibited osteogenic factor-induced MC3T3-E1 cell differentiation, alkaline phosphatase (ALP) levels, calcium deposition, and osteopontin secretion and increased the activity of osteoclast-associated molecules, including cathepsin K and tartrate-resistant acid phosphatase in vitro. Finally, ibudilast blocked the LPS-induced inhibition of osteoblast activation and activation of osteoclast in vitro and attenuated LPS-induced delayed callus bone formation in vivo. Our results provide a basis for the development of a novel strategy for the treatment of bone infection.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Chao Liu ◽  
An-Song Liu ◽  
Da Zhong ◽  
Cheng-Gong Wang ◽  
Mi Yu ◽  
...  

AbstractBone marrow-derived mesenchymal stem cells (BM-MSCs), the common progenitor cells of adipocytes and osteoblasts, have been recognized as the key mediator during bone formation. Herein, our study aim to investigate molecular mechanisms underlying circular RNA (circRNA) AFF4 (circ_AFF4)-regulated BM-MSCs osteogenesis. BM-MSCs were characterized by FACS, ARS, and ALP staining. Expression patterns of circ_AFF4, miR-135a-5p, FNDC5/Irisin, SMAD1/5, and osteogenesis markers, including ALP, BMP4, RUNX2, Spp1, and Colla1 were detected by qRT-PCR, western blot, or immunofluorescence staining, respectively. Interactions between circ_AFF4 and miR-135a-5p, FNDC5, and miR-135a-5p were analyzed using web tools including TargetScan, miRanda, and miRDB, and further confirmed by luciferase reporter assay and RNA pull-down. Complex formation between Irisin and Integrin αV was verified by Co-immunoprecipitation. To further verify the functional role of circ_AFF4 in vivo during bone formation, we conducted animal experiments harboring circ_AFF4 knockdown, and born samples were evaluated by immunohistochemistry, hematoxylin and eosin, and Masson staining. Circ_AFF4 was upregulated upon osteogenic differentiation induction in BM-MSCs, and miR-135a-5p expression declined as differentiation proceeds. Circ_AFF4 knockdown significantly inhibited osteogenesis potential in BM-MSCs. Circ_AFF4 stimulated FNDC5/Irisin expression through complementary binding to its downstream target molecule miR-135a-5p. Irisin formed an intermolecular complex with Integrin αV and activated the SMAD1/5 pathway during osteogenic differentiation. Our work revealed that circ_AFF4, acting as a sponge of miR-135a-5p, triggers the promotion of FNDC5/Irisin via activating the SMAD1/5 pathway to induce osteogenic differentiation in BM-MSCs. These findings gained a deeper insight into the circRNA-miRNA regulatory system in the bone marrow microenvironment and may improve our understanding of bone formation-related diseases at physiological and pathological levels.


Medicina ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 180 ◽  
Author(s):  
Rodolfo Mauceri ◽  
Denise Murgia ◽  
Orazio Cicero ◽  
Luigi Paternò ◽  
Luca Fiorillo ◽  
...  

The management of critical-size bone defects is still demanding. Recently, autologous platelet concentrates in combination with bone substitute have been applied and reported in a few studies. Our aim is to report the healing of a critical-size alveolar bone defect treated with a new bone regeneration technique by means of L-PRF and L-PRF blocks. A 45-year-old woman presented a large cystic lesion; the extraction of three teeth, a cyst removal procedure, and bone regeneration procedures with L-PRF and L-PRF blocks were planned. The L-PRF block was prepared by mixing a bone substitute with a piece of L-PRF membrane and liquid fibrinogen. Additionally, after bone healing an implant-based rehabilitation was optimally performed. On the basis of the positive results, in terms of bone healing and tissue regeneration in a large bone defect, the application of L-PRF and L-PRF blocks, in agreement with the scarce literature, is suggested as a feasible procedure in selected cases.


2019 ◽  
Vol 7 (17) ◽  
pp. 2739-2750 ◽  
Author(s):  
Eman E. A. Mohammed ◽  
Hanan Beherei ◽  
Mohamed El-Zawahry ◽  
Abdel Razik Farrag ◽  
Naglaa Kholoussi ◽  
...  

BACKGROUND: Human amniotic fluid-derived stem cells (hAF-MSCs) have a high proliferative capacity and osteogenic differentiation potential in vitro. The combination of hAF-MSCs with three-dimensional (3D) scaffold has a promising therapeutic potential in bone tissue engineering and regenerative medicine. Selection of an appropriate scaffold material has a crucial role in a cell supporting and osteoinductivity to induce new bone formation in vivo. AIM: This study aimed to investigate and evaluate the osteogenic potential of the 2nd-trimester hAF-MSCs in combination with the 3D scaffold, 30% Nano-hydroxyapatite chitosan, as a therapeutic application for bone healing in the induced tibia defect in the rabbit. SUBJECT AND METHODS: hAF-MSCs proliferation and culture expansion was done in vitro, and osteogenic differentiation characterisation was performed by Alizarin Red staining after 14 & 28 days. Expression of the surface markers of hAF-MSCs was assessed using Flow Cytometer with the following fluorescein-labelled antibodies: CD34-PE, CD73-APC, CD90-FITC, and HLA-DR-FITC. Ten rabbits were used as an animal model with an induced defect in the tibia to evaluate the therapeutic potential of osteogenic differentiation of hAF-MSCs seeded on 3D scaffold, 30% Nano-hydroxyapatite chitosan. The osteogenic differentiated hAF-MSCs/scaffold composite system applied and fitted in the defect region and non-seeded scaffold was used as control. The histopathological investigation was performed at 2, 3, & 4 weak post-transplantation and scanning electron microscope (SEM) was assessed at 2 & 4 weeks post-transplantation to evaluate the bone healing potential in the rabbit tibia defect. RESULTS: Culture and expansion of 2nd-trimester hAF-MSCs presented high proliferative and osteogenic potential in vitro. Histopathological examination for the transplanted hAF-MSCs seeded on the 3D scaffold, 30% Nano-hydroxyapatite chitosan, demonstrated new bone formation in the defect site at 2 & 3 weeks post-transplantation as compared to the control (non-seeded scaffold). Interestingly, the scaffold accelerated the osteogenic differentiation of AF-MSCs and showed complete bone healing of the defect site as compared to the control (non-seeded scaffold) at 4 weeks post-transplantation. Furthermore, the SEM analysis confirmed these findings. CONCLUSION: The combination of the 2nd-trimester hAF-MSCs and 3D scaffold, 30% Nano-hydroxyapatite chitosan, have a therapeutic perspective for large bone defect and could be used effectively in bone tissue engineering and regenerative medicine.


RSC Advances ◽  
2018 ◽  
Vol 8 (15) ◽  
pp. 8080-8088 ◽  
Author(s):  
Yuqin Shen ◽  
Yin Liu ◽  
Han Gao ◽  
Hongbo Fei ◽  
Wenwen Yu ◽  
...  

We employN-acetyl-l-leucine-modified polyethylenimine as an miR-34a carrier and evaluate its delivery ability, transfection efficiency, cytotoxicity and whether it enhances osteogenic differentiation and bone formationin vitroandin vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4110-4110
Author(s):  
Maria Elvira P. Correa ◽  
Oslei P. Almeida ◽  
Danyel Peres ◽  
Marcelo C. Alves ◽  
Fernando F. Costa ◽  
...  

Abstract The beneficial aspects of fibrin sealants for soft tissues are well documented, but studies of their direct influence on bone healing and their effectiveness in augmenting bone graft healing have produced conflicting results. The aim of this study was to evaluate the influence of fibrin sealants (FS) in the alveolar bone healing process during a period of up to 28 days. Seventy-five Wistar rats were submitted to a superior incisor extraction after intramuscular anesthesia (kentamine chloridrate 10% – 10mg/kg and tiazina chloridrate-5mg/kg). The rats were divided into tree different groups and the sealants were introduced into the alveolar bone. The first group (25) received human homemade fibrin glue, the second group (25) FS associated to factor XIII and aprotinin (Beriplast; Aventis-Beringher) and the third group (25) was the control. Animals were sacrificed by prolonged diethyl inhalation on days 7, 14 and 28 after surgery. Animal craniums were dissected and submitted to a decalcification, and preparated for H&E light microscopy. The morphometric study was performed by means of an interactive computerized image analysis system KS400 (Zeiss, Jena). New bone formation was carefully delimited in four different alveolar regions (apical, two middle areas and cervical) of each specimen. The data were statistically analyzed using multiple regression, ANOVA and Tukey test. Results showed that the amount of alveolar bone formation (μm) in the control group and commercial sealant was statistically similar. However, alveolus receiving homemade sealant presented less amount of new bone formation comparing to commercial sealant and control group (p=0.0034) (figure 1). The present study demonstrated that homemade fibrin sealant delays osteogenic formation. Commercial sealant did not improve alveolar repair however, the amount of new bone formation was slightly higher comparing to the control, probably due to the factor XIII present in this sealant. Figure Figure


2021 ◽  
Author(s):  
Ning Wang ◽  
Xuanchen Liu ◽  
Zhen Tang ◽  
Xinghui Wei ◽  
Hui Dong ◽  
...  

Abstract Background: Diabetes mellitus (DM) is considered to be an important factor for bone degeneration disorders such as bone defect nonunion, which is characterized by physical disability and tremendous economy cost to families and society. Exosomal miRNAs of BMSCs have been reported to participate in osteoblastogenesis and modulating bone formation. However, their impacts on the development of bone degeneration in DM are not yet known. The role of miRNAs in BMSCs exosomes on regulating hyperglycemia bone degeneration was investigated in the present study. Results: The osteogenic potential in bone defect repair of exosomes derived from diabetes mellitus BMSCs derived exosomes (DM-Exos) were revealed to be lower than that in normal BMSCs derived exosomes (N-Exos) in vitro and in vivo. Here, we demonstrate that miR-140-3p level was significantly altered in exosomes derived from BMSCs, ADSCs and serum from DM rats. In in vitro experiments, upregulated miR-140-3p exosomes promoted DM BMSCs differentiation into osteoblasts. The effects were exerted by miR-140-3p targeting plxnb1, plexin B1 is the receptor of semaphoring 4D(Sema4D) that inhibited osteocytes differentiation, thereby promoting bone formation. In DM rats with bone defect, miR-140-3p upregulated exosomes were transplanted into injured bone and accelerated bone regeneration. Besides, miR-140-3p in the exosomes was transferred into BMSCs and osteoblasts and promoted bone regeneration by targeting the plexin B1/RohA/ROCK signaling pathway. Conclusions: Normal-Exos and miR-140-3p overexpressed-Exos accelerated diabetic wound healing by promoting the osteoblastogenesis function of BMSCs through inhibition plexin B1 expression which is the receptor of Sema4D and the plexin B1/RhoA/ROCK pathway compared with diabetes mellitus-Exos. This offers a new insight and a new therapy for treating diabetic bone unhealing.


Sign in / Sign up

Export Citation Format

Share Document