Influence of Homemade and Commercial Fibrin Sealant on Alveolar Bone Healing - an Experimental Study.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4110-4110
Author(s):  
Maria Elvira P. Correa ◽  
Oslei P. Almeida ◽  
Danyel Peres ◽  
Marcelo C. Alves ◽  
Fernando F. Costa ◽  
...  

Abstract The beneficial aspects of fibrin sealants for soft tissues are well documented, but studies of their direct influence on bone healing and their effectiveness in augmenting bone graft healing have produced conflicting results. The aim of this study was to evaluate the influence of fibrin sealants (FS) in the alveolar bone healing process during a period of up to 28 days. Seventy-five Wistar rats were submitted to a superior incisor extraction after intramuscular anesthesia (kentamine chloridrate 10% – 10mg/kg and tiazina chloridrate-5mg/kg). The rats were divided into tree different groups and the sealants were introduced into the alveolar bone. The first group (25) received human homemade fibrin glue, the second group (25) FS associated to factor XIII and aprotinin (Beriplast; Aventis-Beringher) and the third group (25) was the control. Animals were sacrificed by prolonged diethyl inhalation on days 7, 14 and 28 after surgery. Animal craniums were dissected and submitted to a decalcification, and preparated for H&E light microscopy. The morphometric study was performed by means of an interactive computerized image analysis system KS400 (Zeiss, Jena). New bone formation was carefully delimited in four different alveolar regions (apical, two middle areas and cervical) of each specimen. The data were statistically analyzed using multiple regression, ANOVA and Tukey test. Results showed that the amount of alveolar bone formation (μm) in the control group and commercial sealant was statistically similar. However, alveolus receiving homemade sealant presented less amount of new bone formation comparing to commercial sealant and control group (p=0.0034) (figure 1). The present study demonstrated that homemade fibrin sealant delays osteogenic formation. Commercial sealant did not improve alveolar repair however, the amount of new bone formation was slightly higher comparing to the control, probably due to the factor XIII present in this sealant. Figure Figure

2019 ◽  
Vol 14 (1) ◽  
pp. 311-317
Author(s):  
Wei Liu ◽  
Ben Chen ◽  
Youyang Zheng ◽  
Yuehua Shi ◽  
Zhuojin Shi

AbstractPlatelet-rich plasma (PRP) has been shown to be a beneficial growth factor for bone tissue healing and is used in implantology. The aim of this study was to investigate the effects of PRP on bone defects in rabbits. Twenty rabbits were used to establish the implant bone defect model in this study. An intrabony defect (5mm × 5mm × 3mm) was created in alveolar bone in the lower jar of each rabbit. The wound was treated with PRP. The expression of platelet-derived growth factor BB (PDGFBB) was assessed by enzyme-linked immunosorbent assay (ELISA). Focal adhesion kinase (FAK) and related phosphatidylinositol 3-kinase (PI3K)/AKT (protein kinase B) levels were measured by Western blot. The results show that PRP could significantly improve the bone healing process when compared with control, and 10% PRP could markedly increase fibroblast proliferation 48-h post treatment. PDGFBB was higher in the PRP group than that in the control group. PRP treatment also could elevate the phosphorylation of FAK and PI3K/AKT, although the inhibitor of PDGFR could reverse this trend. These results suggest that PRP treatment improves the bone healing process through the FAK/PI3K/AKT pathway.


2012 ◽  
Vol 23 (3) ◽  
pp. 228-234 ◽  
Author(s):  
Ana Paula Oliveira Giorgetti ◽  
João Batista César Neto ◽  
Márcio Zaffalon Casati ◽  
Enílson Antonio Sallum ◽  
Francisco Humberto Nociti Júnior

The aim of this study was to evaluate, histometrically, the bone healing of the molar extraction socket just after cigarette smoke inhalation (CSI). Forty male Wistar rats were randomly assigned to a test group (animals exposed to CSI, starting 3 days before teeth extraction and maintained until sacrifice; n=20) and a control group (animals never exposed to CSI; n=20). Second mandibular molars were bilaterally extracted and the animals (n=5/group/period) were sacrificed at 3, 7, 10 and 14 days after surgery. Digital images were analyzed according to the following histometric parameters: osteoid tissue (OT), remaining area (RA), mineralized tissue (MT) and non-mineralized tissue (NMT) in the molar socket. Intergroup analysis showed no significant differences at day 3 (p>0.05) for all parameters. On the 7th day, CSI affected negatively (p<0.05) bone formation with respect to NMT and RA (MT: 36%, NMT: 53%, RA: 12%; and MT: 39%, NMT: 29%, RA: 32%, for the control and test groups, respectively). In contrast, no statistically significant differences (p>0.05) were found at days 10 and 14. It may be concluded that CSI may affect socket healing from the early events involved in the healing process, which may be critical for the amount and quality of new-bone formation in smokers.


2006 ◽  
Vol 309-311 ◽  
pp. 255-258
Author(s):  
Y.S. Kim ◽  
Tae Gyun Kim ◽  
Ui Won Jung ◽  
C.S. Kim ◽  
Seong Ho Choi ◽  
...  

Dehiscence bone defects, frequently observed on dental implants placed in periodontitis-affected alveolar bone or extraction sockets were treated with β-tricalcium phosphate (β –TCP) and chitosan membrane for guided bone regeneration, and the new bone formation on the treated sites were studied. Beagle dogs were used for the experiment. First to fourth mandibular premolars were extracted, and the post extraction alveolar bone surface was planed. After 8 weeks of healing, 3 by 4mm dehiscence defects were created using straight fissure burs. Total of 16 oxidized titanium surface implants were placed on the bone defects of the subjects, two on each side. Control sites were treated with implants only. Experimental Group 1 sites were treated with implants and chitosan membrane. Experimental Group 2 sites were treated with implants, β-TCP and chitosan membrane. Experimental Group 3 sites were treated with implants, β-TCP, autogenous bone and chitosan membrane. The animals were sacrificed 12 weeks after implant placement, and the specimens from the treated sites were histologically studied with following results. Limited amount of new bone formation was observed in control group with unexposed membrane. Slightly greater amount of bone formation was observed on sites treated with β-TCP+membrane or autogenous bone+ β-TCP+membrane compared to control group. Remnants of chitosan membrane and β-TCP encapsulated with connective tissue were observed during experimental periods. These results suggest that further studies are needed on membrane rigidity and infection control for space maintenance underneath the membrane and bone substitutes in the treatment of dehiscence defects.


2007 ◽  
Vol 361-363 ◽  
pp. 1261-1264
Author(s):  
C.S. Lim ◽  
S.G. Kim ◽  
Sung Chul Lim

We evaluated the bone healing effect of grafting with synthetic β-tricalcium phosphate (β-TCP; Cerasorb®), bovine-derived hydroxyapatite (HA; Bio-Oss®), and a mixture of β-TCP and HA in rats. Each material was grafted in prepared 8-mm frontal bone defects in 15 rats. The control group underwent surgery without any grafting materials and was examined after 4 weeks, whereas the experimental groups received grafting materials and were examined after 1, 2, and 4 weeks. After implantation, the rats were sacrificed for histomorphometric studies using light microscopy, and the data were analyzed using analysis of variance. Considerable inflammation and fibrosis were observed after 1 and 2 weeks in all experimental groups, whereas the inflammation was reduced and fibrosis was stabilized after 4 weeks. New bone formation was observed at the defect margin. Statistically, there was no difference in new bone formation among the three experimental groups. In conclusion, there was no difference in new bone formation using Bio-Oss®, Cerasorb®, and a mixture of Bio-Oss® and Cerasorb®.


2007 ◽  
Vol 361-363 ◽  
pp. 1257-1260 ◽  
Author(s):  
K.H. Yun ◽  
S.G. Kim ◽  
Sung Chul Lim

We compared the effect of osteotomies performed using piezoelectric surgery (Piezosurgery®) and the conventional bur method on new bone formation in the rabbit mandible, focusing on light-microscopy observations of the early healing process after 1, 2, and 4 weeks. The time required to perform the osteotomy was also compared. We showed that piezoelectric surgery and the conventional bur method had no marked difference on early bone healing, although the osteotomy time was shorter with the conventional bur method than with Piezosurgery. Because the instrument used in Piezosurgery is sharp and more controllable, piezoelectric surgery should be more useful for delicate surgery, such as maxillary sinus lifting and segmental osteotomies, with the fewest complications.


2020 ◽  
Vol 46 (3) ◽  
pp. 221-226
Author(s):  
Alper Kızıldağ ◽  
Ufuk Tasdemir ◽  
Taner Arabacı ◽  
Canan Aksu Kızıldağ ◽  
Mevlüt Albayrak ◽  
...  

The aim of this study was to evaluate the effect of autogenous tooth bone graft (ATBG) combined with platelet-rich fibrin (PRF) on bone healing in rabbit peri-implant osseous defects. Eighteen New Zealand rabbits were divided into 3 groups. Bone defects were prepared in each rabbit, and then an implant cavity was created in the defects. Dental implants were placed, and the peri-implant bone defects were treated with the following 3 methods: no graft material was applied in the control group, bone defects were treated with ATBG in the ATBG group, and bone defects were treated with ATBG combined with PRF in the ATBG+PRF group. After 28 days, the rabbits were sacrificed, and the dental implants with surrounding bone were removed. New bone formation and the percentage of bone-to-implant contact (BIC) were determined with histomorphometric evaluations. New bone formation was significantly higher in the ATBG+PRF group than the control and ATBG groups (P &lt; .05). In addition, BIC was significantly higher in the ATBG+PRF group than in the control and ATBG groups (P &lt; .05). The combination of ATBG with PRF contributed to bone healing in rabbits with peri-implant bone defects.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 381
Author(s):  
Hyunmin Choi ◽  
Kyu-Hyung Park ◽  
Narae Jung ◽  
June-Sung Shim ◽  
Hong-Seok Moon ◽  
...  

The aim of this study was to investigate the behavior of dental-derived human mesenchymal stem cells (d-hMSCs) in response to differently surface-treated implants and to evaluate the effect of d-hMSCs on local osteogenesis around an implant in vivo. d-hMSCs derived from alveolar bone were established and cultured on machined, sandblasted and acid-etched (SLA)-treated titanium discs with and without osteogenic induction medium. Their morphological and osteogenic potential was assessed by scanning electron microscopy (SEM) and real-time polymerase chain reaction (RT-PCR) via mixing of 5 × 106 of d-hMSCs with 1 mL of Metrigel and 20 μL of gel-cell mixture, which was dispensed into the defect followed by the placement of customized mini-implants (machined, SLA-treated implants) in New Zealand white rabbits. Following healing periods of 2 weeks and 12 weeks, the obtained samples in each group were analyzed radiographically, histomorphometrically and immunohistochemically. The quantitative change in osteogenic differentiation of d-hMSCs was identified according to the type of surface treatment. Radiographic analysis revealed that an increase in new bone formation was statistically significant in the d-hMSCs group. Histomorphometric analysis was in accordance with radiographic analysis, showing the significantly increased new bone formation in the d-hMSCs group regardless of time of sacrifice. Human nuclei A was identified near the area where d-hMSCs were implanted but the level of expression was found to be decreased as time passed. Within the limitations of the present study, in this animal model, the transplantation of d-hMSCs enhanced the new bone formation around an implant and the survival and function of the stem cells was experimentally proven up to 12 weeks post-sacrifice.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Ana Paula Farnezi Bassi ◽  
Vinícius Ferreira Bizelli ◽  
Tamires Mello Francatti ◽  
Ana Carulina Rezende de Moares Ferreira ◽  
Járede Carvalho Pereira ◽  
...  

Biomaterials for use in guided bone regeneration (GBR) are constantly being investigated and developed to improve clinical outcomes. The present study aimed to comparatively evaluate the biological performance of different membranes during the bone healing process of 8 mm critical defects in rat calvaria in order to assess their influence on the quality of the newly formed bone. Seventy-two adult male rats were divided into three experimental groups (n = 24) based on the membranes used: the CG—membrane-free control group (only blood clot, negative control), BG—porcine collagen membrane group (Bio-Guide®, positive control), and the PCL—polycaprolactone (enriched with 5% hydroxyapatite) membrane group (experimental group). Histological and histometric analyses were performed at 7, 15, 30, and 60 days postoperatively. The quantitative data were analyzed by two-way ANOVA and Tukey’s test (p < 0.05). At 7 and 15 days, the inflammatory responses in the BG and PCL groups were significantly different (p < 0.05). The PCL group, at 15 days, showed a large area of newly formed bone. At 30 and 60 days postoperatively, the PCL and BG groups exhibited similar bone healing, including some specimens showing complete closure of the critical defect (p = 0.799). Thus, the PCL membrane was biocompatible, and has the potential to help with GBR procedures.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Andyka Yasa I Putu Gede ◽  
I Made Jawi ◽  
I Made Muliarta

Tooth extraction is a dental treatment that is performed frequently in dentistry. This procedure will stimulate a sophisticated healing process involving a variety of biological factors although it takes a long time to complete. Three phases occur in this process i.e. the inflammatory phase, the proliferation phase, and the remodeling phase which aim to restore the tissue function. Several interventions can be used to accelerate bone formation after tooth extraction. Recently, hyaluronic acid (HA) has been commonly used in dentistry due to their essential physiological effects for the periodontal connective tissue, gingiva, and alveolar bone. Hyaluronic acidis a natural non-sulfate glycosaminoglycans compound that has high molecular weight consisting of D-glucuronic acid and N-acetylglucosamine. Hyaluronic acidis also a component of the extracellular matrix that plays an important role in morphogenesis and tissue healing. The mechanism of action of HA works in two ways, that is passive and active mechanism. The passive mechanism is depend on physical and chemical properties of HA that can change the molecular weight and concentration properties. The active mechanism of HA works by stimulating signal transduction pathway initiated by ligand binding with its receptors through autocrine or paracrine processes. The administration of HA can accelerate bone formation due to it can enhance bone morphogenetic protein (BMP) which belongs to the TGF- β superfamily that has high osteogenic capacity. The HA works through a passive mechanism that depends on its molecular weight and an active mechanism by increasing BMP activity.


2020 ◽  
Author(s):  
Semsettin Ilker ◽  
Alper Ilker ◽  
Efe Sivrikaya

Abstract There is a paucity of studies aimed to compare the healing process of piezosurgery with conventional surgery. This study evaluated the histopathological assessment of healing process in osteotomy defects caused by these surgical methods in rats using an amniotic membrane (hAM). In this randomized controlled experimental study, there were 2 main groups: group 1 (Piezosurgery method-right tibia) and group 2 (Conventional surgery method-left tibia) and subgroups determined by the sacrification periods on the 7th (n = 20) and 21st days (n = 20). hAM was used in all groups. The primary outcome variable was new bone formation, while inflammation, necrosis, fibrotic tissue formation in the defective zone were secondary outcomes. 40 male Sprague Dawley rats were used. The 7th day fibrosis levels and the 7th new bone-building level of the group who underwent piezosurgery were found to be significantly higher than those of the group undergoing conventional surgery (p < 0.05) and the 21st new bone-building level was significantly lower than conventional surgery. In all rats, on the 21st day, there were statistically significant decreases in inflammation, fibrosis, and increases in the healing score (p < 0.05). Also, there was no statistically difference in new bone formation between 7st and 21st days (p > 0.05). The choice of conventional surgery when applying with hAM increases the new bone building in the late period.


Sign in / Sign up

Export Citation Format

Share Document