scholarly journals LSTM-Based Traffic Load Balancing and Resource Allocation for an Edge System

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Thembelihle Dlamini ◽  
Sifiso Vilakati

The massive deployment of small cell Base Stations (SBSs) empowered with computing capabilities presents one of the most ingenious solutions adopted for 5G cellular networks towards meeting the foreseen data explosion and the ultralow latency demanded by mobile applications. This empowerment of SBSs with Multi-access Edge Computing (MEC) has emerged as a tentative solution to overcome the latency demands and bandwidth consumption required by mobile applications at the network edge. The MEC paradigm offers a limited amount of resources to support computation, thus mandating the use of intelligence mechanisms for resource allocation. The use of green energy for powering the network apparatuses (e.g., Base Stations (BSs), MEC servers) has attracted attention towards minimizing the carbon footprint and network operational costs. However, due to their high intermittency and unpredictability, the adoption of learning methods is a requisite. Towards intelligent edge system management, this paper proposes a Green-based Edge Network Management (GENM) algorithm, which is an online edge system management algorithm for enabling green-based load balancing in BSs and energy savings within the MEC server. The main goal is to minimize the overall energy consumption and guarantee the Quality of Service (QoS) within the network. To achieve this, the GENM algorithm performs dynamic management of BSs, autoscaling and reconfiguration of the computing resources, and on/off switching of the fast tunable laser drivers coupled with location-aware traffic scheduling in the MEC server. The obtained simulation results validate our analysis and demonstrate the superior performance of GENM compared to a benchmark algorithm.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Thembelihle Dlamini ◽  
Sifiso Vilakati

As mobile networks (MNs) are advancing towards meeting mobile user requirements, the rural-urban divide still remains a major challenge. While areas within the urban space (metropolitan mobile space) are being developed, i.e., small Base Stations (BSs) empowered with computing capabilities are deployed to improve the delivery of user requirements, rural areas are left behind. Due to challenges of low population density, low income, difficult terrain, nonexistent infrastructure, and lack of power grid, remote areas have low digital penetration. This situation makes remote areas less attractive towards investments and to operate connectivity networks, thus failing to achieve universal access to the Internet. In addressing this issue, this paper proposes a new BS deployment and resource management method for remote and rural areas. Here, two MN operators share their resources towards the procurement and deployment of green energy-powered BSs equipped with computing capabilities. Then, the network infrastructure is shared between the mobile operators, with the main goal of enabling energy-efficient infrastructure sharing, i.e., BS and its colocated computing platform. Using this resource management strategy in rural communication sites guarantees a quality of service (QoS) comparable to that of urban communication sites. The performance evaluation conducted through simulations validates our analysis as the prediction variations observed show greater accuracy between the harvested energy and the traffic load. Also, the energy savings decrease as the number of mobile users (50 users in our case) connected to the remote site increases. Lastly, the proposed algorithm achieves 51% energy savings when compared with the 43% obtained by our benchmark algorithm. The proposed method demonstrates superior performance over the benchmark algorithm as it uses foresighted optimization where the harvested energy and the expected load are predicted over a given short-term horizon.


Author(s):  
Alexandra Bousia ◽  
Elli Kartsakli ◽  
Angelos Antonopoulos ◽  
Luis Alonso ◽  
Christos Verikoukis

Reducing the energy consumption in wireless networks has become a significant challenge, not only because of its great impact on the global energy crisis, but also because it represents a noteworthy cost for telecommunication operators. The Base Stations (BSs), constituting the main component of wireless infrastructure and the major contributor to the energy consumption of mobile cellular networks, are usually designed and planned to serve their customers during peak times. Therefore, they are more than sufficient when the traffic load is low. In this chapter, the authors propose a number of BSs switching off algorithms as an energy efficient solution to the problem of redundancy of network resources. They demonstrate via analysis and by means of simulations that one can achieve reduction in energy consumption when one switches off the unnecessary BSs. In particular, the authors evaluate the energy that can be saved by progressively turning off BSs during the periods when traffic decreases depending on the traffic load variations and the distance between the BS and their associated User Equipments (UEs). In addition, the authors show how to optimize the energy savings of the network by calculating the most energy-efficient combination of switched off and active BSs.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4415 ◽  
Author(s):  
Taewoon Kim ◽  
Chanjun Chun ◽  
Wooyeol Choi

In networking systems such as cloud radio access networks (C-RAN) where users receive the connection and data service from short-range, light-weight base stations (BSs), users’ mobility has a significant impact on their association with BSs. Although communicating with the closest BS may yield the most desirable channel conditions, such strategy can lead to certain BSs being over-populated while leaving remaining BSs under-utilized. In addition, mobile users may encounter frequent handovers, which imposes a non-negligible burden on BSs and users. To reduce the handover overhead while balancing the traffic loads between BSs, we propose an optimal user association strategy for a large-scale mobile Internet of Things (IoT) network operating on C-RAN. We begin with formulating an optimal user association scheme focusing only on the task of load balancing. Thereafter, we revise the formulation such that the number of handovers is minimized while keeping BSs well-balanced in terms of the traffic load. To evaluate the performance of the proposed scheme, we implement a discrete-time network simulator. The evaluation results show that the proposed optimal user association strategy can significantly reduce the number of handovers, while outperforming conventional association schemes in terms of load balancing.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Thembelihle Dlamini ◽  
Ángel Fernández Gambín ◽  
Daniele Munaretto ◽  
Michele Rossi

The convergence of communication and computing has led to the emergence of multi-access edge computing (MEC), where computing resources (supported by virtual machines (VMs)) are distributed at the edge of the mobile network (MN), i.e., in base stations (BSs), with the aim of ensuring reliable and ultra-low latency services. Moreover, BSs equipped with energy harvesting (EH) systems can decrease the amount of energy drained from the power grid resulting into energetically self-sufficient MNs. The combination of these paradigms is considered here. Specifically, we propose an online optimization algorithm, called Energy Aware and Adaptive Management (ENAAM), based on foresighted control policies exploiting (short-term) traffic load and harvested energy forecasts, where BSs and VMs are dynamically switched on/off towards energy savings and Quality of Service (QoS) provisioning. Our numerical results reveal that ENAAM achieves energy savings with respect to the case where no energy management is applied, ranging from 57% to 69%. Moreover, the extension of ENAAM within a cluster of BSs provides a further gain ranging from 9% to 16% in energy savings with respect to the optimization performed in isolation for each BS.


2021 ◽  
Author(s):  
Lilatul Ferdouse

Cellular based M2M systems generate massive number of access requests which create congestion in the cellular network. The contention-based random access procedures are designed for cellular networks which cannot accommodate a large number of M2M traffic. Moreover, M2M systems share same radio resources with cellular users. Resource allocation problem becomes a challenging issue in cellular M2M systems. In this thesis, we address these two problems by analyzing a contention-based slotted Aloha random access procedure for M2M networks using different performance metrics. The impact of massive M2M traffic over cellular traffic is studied based on different arrival rate, random access opportunity and throughput. An analytical model of selecting a base station (eNB) along with load balancing is developed. Finally, two methods have been presented and evaluated with M2M traffic. First one is dynamic access class barring method which controls RAN level congestion by selecting an appropriate eNB and applying load balancing method. Second one is relay-assisted radio resource allocation method which maximizes the sum throughput of the system by utilizing the available radio resource blocks and relay nodes to the MTC systems. Numerical results show that frame transmission rate influences the selection probability of the base stations. Moreover, the dynamic access class barring parameter along with frame transmission rate improve the overall throughput and access success probability among base stations as well as avoid overload situation in a particular base station.


2021 ◽  
Author(s):  
Lilatul Ferdouse

Cellular based M2M systems generate massive number of access requests which create congestion in the cellular network. The contention-based random access procedures are designed for cellular networks which cannot accommodate a large number of M2M traffic. Moreover, M2M systems share same radio resources with cellular users. Resource allocation problem becomes a challenging issue in cellular M2M systems. In this thesis, we address these two problems by analyzing a contention-based slotted Aloha random access procedure for M2M networks using different performance metrics. The impact of massive M2M traffic over cellular traffic is studied based on different arrival rate, random access opportunity and throughput. An analytical model of selecting a base station (eNB) along with load balancing is developed. Finally, two methods have been presented and evaluated with M2M traffic. First one is dynamic access class barring method which controls RAN level congestion by selecting an appropriate eNB and applying load balancing method. Second one is relay-assisted radio resource allocation method which maximizes the sum throughput of the system by utilizing the available radio resource blocks and relay nodes to the MTC systems. Numerical results show that frame transmission rate influences the selection probability of the base stations. Moreover, the dynamic access class barring parameter along with frame transmission rate improve the overall throughput and access success probability among base stations as well as avoid overload situation in a particular base station.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Navikkumar Modi ◽  
Philippe Mary ◽  
Christophe Moy

Abstract This paper proposes a learning policy to improve the energy efficiency (EE) of heterogeneous cellular networks. The combination of active and inactive base stations (BS) that allows for maximizing EE is identified as a combinatorial learning problem and requires high computational complexity as well as a large signaling overhead. This paper aims at presenting a learning policy that dynamically switches a BS to ON or OFF status in order to follow the traffic load variation during the day. The network traffic load is represented as a Markov decision process, and we propose a modified upper confidence bound algorithm based on restless Markov multi-armed bandit framework for the BS switching operation. Moreover, to cope with initial reward loss and to speed up the convergence of the learning algorithm, the transfer learning concept is adapted to our algorithm in order to benefit from the transferred knowledge observed in historical periods from the same region. Based on our previous work, a convergence theorem is provided for the proposed policy. Extensive simulations demonstrate that the proposed algorithms follow the traffic load variation during the day and contribute to a performance jump-start in EE improvement under various practical traffic load profiles. It also demonstrates that proposed schemes can significantly reduce the total energy consumption of cellular network, e.g., up to 70% potential energy savings based on a real traffic profile.


Sign in / Sign up

Export Citation Format

Share Document