scholarly journals Exploration of Digital Twin Design Mechanism of the Deep in Situ Rock Insulation Coring Device

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Bo Yu ◽  
Heping Xie ◽  
Ling Chen ◽  
Wu Zhao ◽  
Zhiqiang He

With the development of the resource exploration and environmental science drilling, strict and scientific requirements are put forward for the samples taken from drilling. It is significant to keep the original appearance of the core and obtain the in situ core for the analysis of deep geological fluid and the exploration of the law of geological disasters caused by large-scale geological exploitation. To achieve the high-fidelity in situ core of deep rock, the development of the corresponding deep in situ fidelity coring device should involve the insulation coring device. The development of deep in situ fidelity coring device is a typical sophisticated product design. There are many problems in the design process, such as multimodules, multidisciplinary, crossdomain, and high coupling, which makes it more difficult for users to participate in product design and understand the product design intention. Digital twin technology, such as time data collection, accelerated iterative optimization, and high-fidelity rendering, provides users with an immersive experience and deepens their understanding of the product design intention. The exploration of the novel design model combined digital twin technology with innovative design theory. Digital twin innovative design of the deep in situ insulation coring device is based on the innovative design method, which built a digital connection between the pre-research test platform and the corresponding simulation models. This digital twin to help users participate in product design and understand the product design process. Finally, the TOPSIS evaluation model was used to calculate the user’s score on the design scheme, which increased by 27.64%, which improves the overall efficiency of product design. This paper provides a practical design method and technical means for the design of the deep in situ insulation coring device based on the geological mechanism and control theory of thermal insulation core.

2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Qian Hui ◽  
Yan Li ◽  
Ye Tao ◽  
Hongwei Liu

AbstractA design problem with deficient information is generally described as wicked or ill-defined. The information insufficiency leaves designers with loose settings, free environments, and a lack of strict boundaries, which provides them with more opportunities to facilitate innovation. Therefore, to capture the opportunity behind the uncertainty of a design problem, this study models an innovative design as a composite solving process, where the problem is clarified and resolved from fuzziness to satisfying solutions by interplay among design problems, knowledge, and solutions. Additionally, a triple-helix structured model for the innovative product design process is proposed based on the co-evolution of the problem, solution, and knowledge spaces, to provide designers with a distinct design strategy and method for innovative design. The three spaces interact and co-evolve through iterative mappings, including problem structuring, knowledge expansion, and solution generation. The mappings carry the information processing and decision-making activities of the design, and create the path to satisfying solutions. Finally, a case study of a reactor coolant flow distribution device is presented to demonstrate the practicability of this model and the method for innovative product design.


Author(s):  
Katharine McCoy

This presentation, reflecting a politics undergraduate thesis, will explore the design process behind the ballots that voters use in democratic elections around the world. Ballots are an inherently political objects, and in many cases, the most direct line of communication a citizen has to the government of their country. As such, the design of the ballot affects the legitimacy of higher level electoral and democratic institutions. This project argues that by co-opting the language of product design, a universal ballot design process would make more efficient ballots across the globe.   Product design starts with a brainstorming stage that explores at the user, the goal of the object, and the context of its use to create an effective design. By applying these observations to the process of designing a ballot, each electoral commission can produce a more effective ballot. Currently there is no standardization for ballot design other than ensuring that electoral commissions tried to make it “friendly.” By examining cases of bad ballot design, it is possible to see what element of the design process was missed or misused to create a process that corrects for these mistakes. This project examines poorly designed ballots in Florida, Scotland, and Colombia to explore the large-scale effects these small design choices make, and how to fix them. 


2021 ◽  
Vol 16 (2) ◽  
pp. 3-22
Author(s):  
Yomna K. Abdallah ◽  
Alberto T. Estevez

ABSTRACT Using bioenergy systems in architecture provides energy by means of negative emissions technologies (NETs). It plays an important role in stabilizing CO2 emissions at low levels. This depends on options of low life cycle emissions (for instance, a sustainable use of biomass residues), and on outcomes that are site-specific and rely on efficient integrated systems that convert biomass into bioenergy. The objective of this study is to develop self-sufficient systems that generate bioelectricity and offer safety, electricity generation efficiency, cost-effectiveness, waste treatment, integration in domestic use, ease of use, reproducibility and availability. The study also intends to elaborate a general design method of embedding and utilizing microorganisms into architectural elements to achieve design ecology, introducing a multidisciplinary research application through a design theory aspect. The study is based on previous experimental work conducted by the authors. Microbial fuel cell technology was applied to exploit the natural potential of a fungal strain that was identified and optimized to be implemented in microbial fuel cells (MFCs) to generate electricity. The outcomes were included in the self-sufficient cluster design that meets the aforementioned conditions. The novelty of this study is the direct use of a bioreactor of MFCs in a design application for bioelectricity production. It aims to reduce the currently high global CO2 emissions that come from the energy supply sector (47%) and from the building sector (3%), as well as to eliminate the need for large-scale infrastructure intervention. This self-sufficient bio-electricity cluster therefore outweighs other abiotic renewable energy resources such as solar energy or wind power.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jianan Li ◽  
Heping Xie ◽  
Ling Chen ◽  
Cong Li ◽  
Zhiqiang He

Exploration of deep-rock mechanics has a significant influence on the techniques of mining and rock mechanics. Rock coring technique is the basic method for all rock mechanics study. With the increase of the drilling depth and increasing strength of the hard rock, how to obtain high-quality rock core through various coring techniques is an eternal work. Here an innovative method is applied to design the new coring system to maximize the efficiency of operation. The stress conditions or parameters of rock core in the coring are analyzed, and the mechanism of the core with in situ stress is shown in this paper. The conflict of the core and coring tool chamber is proposed for the innovative design. The innovative design method is fulfilled by the theory of inventive problem solving (TRIZ). An improved coring system for the full-length core with in situ stress was obtained with the solutions of improved coring mechanism, cutting mechanism, and spiral drill pipe.


2004 ◽  
Vol 126 (6) ◽  
pp. 877-885 ◽  
Author(s):  
Kenneth J. Bell

The design process for heat exchangers in the process industries and for similar applications in the power and large-scale environmental control industries is described. Because of the variety of substances (frequently multicomponent, of variable and uncertain composition, and changing phase) to be processed under wide ranges of temperatures, pressures, flow rates, chemical compatibility, and fouling propensity, these exchangers are almost always custom-designed and constructed. Many different exchanger configurations are commercially available to meet special conditions, with design procedures of varying degrees of reliability. A general design logic can be applied, with detailed procedures specific to the type of exchanger. The basis of the design process is first a careful and comprehensive specification of the range of conditions to be satisfied, and second, organized use of a fundamentally valid and extrapolatable rating method. The emphasis in choosing a design method is upon rational representation of the physical processes, rather than upon high accuracy. Finally, the resultant design must be vetted in detail by the designer and the process engineer for operability, flexibility, maintainability, and safety.


2013 ◽  
Vol 318 ◽  
pp. 174-176 ◽  
Author(s):  
Ren Qiang Lin ◽  
He Li ◽  
Meng Ma ◽  
Wen Wang

At present, many domestic and international products' design are promoted the design concept based on the user experience or user awareness. It has been generally aware of the industrial design is no longer just belong to the narrow shape and design areas, therefore a correct understanding of user experience and user awareness is very necessary, whereas in the study of design theory, a lot of people have user experience mixed with user awareness as one concept, it's a truth that the both are closely linked, while there are certain differences between them, if they are mixed together, it will not only narrow us thinking play space, but also disable to achieve greater breakthroughs in the design process of innovation, on the contrary if the correct understanding and reasonable use of the both and furthermore transplanted into the design of the product, for the current field of industrial design, it is a huge reform and innovation.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2263
Author(s):  
Pablo Pereira Pereira Álvarez ◽  
Pierre Kerfriden ◽  
David Ryckelynck ◽  
Vincent Robin

Welding operations may be subjected to different types of defects when the process is not properly controlled and most defect detection is done a posteriori. The mechanical variables that are at the origin of these imperfections are often not observable in situ. We propose an offline/online data assimilation approach that allows for joint parameter and state estimations based on local probabilistic surrogate models and thermal imaging in real-time. Offline, the surrogate models are built from a high-fidelity thermomechanical Finite Element parametric study of the weld. The online estimations are obtained by conditioning the local models by the observed temperature and known operational parameters, thus fusing high-fidelity simulation data and experimental measurements.


2011 ◽  
Vol 341-342 ◽  
pp. 286-290
Author(s):  
Xiao Ping Chen ◽  
Jin Rong ◽  
Ru Fu Hu

Machinery industry changes with each passing day, asking for the more and more importance of the machinery industry performance. The innovative design needs to be used to tools designing for improving the work more efficiency. Take the wrench product designing as an example, this article analyzes the issue of the mechanical products innovation, applies the theories of innovation to a manual wrench innovative design and puts forward the thought of the wrench innovative design scheme, principles and the design process. In the end, the design scheme is evaluated, which indicates that the innovative design approach can be applied to a manual wrench design.


2010 ◽  
Vol 139-141 ◽  
pp. 1136-1141
Author(s):  
Chun Sheng Zhou ◽  
Wu Zhao ◽  
Kai Zhang

In order to improve the logistic characteristics of products, a process of product innovative design for logistics is presented which is combined with the idea of product design for logistics and innovative design theory. Some innovative design approaches i.e. TRIZ, QFD, knowledge-based innovative design, are introduced. Based upon product design criteria for logistics and QFD (Quality Function Deployment), the conflicts between product performance and logistic characteristics are discussed and determined. TRIZ (Theory of Inventive Problem Solving) is employed to solve the conflicts, with the conflict matrix and inventive principles. According to the product logistic characteristics, the general TRIZ engineering parameters are simplified to facilitate the application. Further more, the analysis of logistic design conflicts is introduced. A case study has been done to illustrate the method proposed in this paper.


Sign in / Sign up

Export Citation Format

Share Document