scholarly journals Inhibitory Effects of Litsea cubeba Oil and Its Active Components on Aspergillus flavus

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Shiqi Xia ◽  
Hong Lin ◽  
Peilin Zhu ◽  
Peiling Wang ◽  
Shengliang Liao ◽  
...  

Aspergillus flavus (A. flavus) is a frequent harmful fungal pathogen. It can infect traditional Chinese medicine materials and release aflatoxin, to cause both economic and human health effects. By comparing the inhibitory potential of Litsea cubeba oil and its active components to A. flavus CGMCC 3.4408, citral was confirmed to be the main component that inhibits the growth of A. flavus CGMCC 3.4408, and the EC50 was 163.65 mg L−1. The inhibitory effect of citral on A. flavus CGMCC 3.4408 was studied for colony growth rate, mycelium biomass, aflatoxin production, and microstructure. Citral slowed down the growth rate of colonies and reduced mycelium biomass and toxin production. Moreover, citral altered the morphology of fungal spores and mycelium. In addition, citral also has the inhibitory effects on the isolates of A. flavus from moldy traditional Chinese medicinal materials. Thus, citral can be used as a potential agent to check the growth of A. flavus or related fungal strains.

Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 636 ◽  
Author(s):  
Zhao ◽  
Zhang ◽  
Folly ◽  
Chang ◽  
Wang ◽  
...  

Lactobacillus plantarum, as a natural bio-preservative, has attracted a great deal of attention in recent years. In this study, 22 L. plantarum strains were tested against the aflatoxin-producing fungus, Aspergillus flavus; strain IAMU80070 showed the highest antifungal activity. At a concentration of 5 × 105 colony-forming units (CFU) mL−1, it completely inhibited A. flavus growth and decreased aflatoxin production by 93%. Furthermore, ultrastructural examination showed that IAMU80070 destroyed the cellular structure of hyphae and spores. To explore the inhibitory effect of IAMU80070 on A. flavus at the transcriptional level, transcriptome data were obtained and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The aflatoxin biosynthetic process was the most significantly downregulated functional category, while genes implicated in the synthesis and organization of cell wall polysaccharides were upregulated. Quantitative real-time PCR results verified the credibility and reliability of the RNA sequencing data. These results provided insight into the transcriptome of A. flavus in response to the antagonistic effects of L. plantarum IAMU80070.


2021 ◽  
Vol 2021 ◽  
pp. 1-1
Author(s):  
Shiqi Xia ◽  
Hong Lin ◽  
Peilin Zhu ◽  
Peiling Wang ◽  
Shengliang Liao ◽  
...  


1999 ◽  
Vol 62 (4) ◽  
pp. 414-417 ◽  
Author(s):  
J. J. FAN ◽  
J. H. CHEN

Welsh onion ethanol extracts were tested for their inhibitory activity against the growth and aflatoxin production of Aspergillus flavus and A. parasiticus. The survival of spores of A. flavus and A. parasiticus depended on both the extract concentration and the exposure time of the spores to the Welsh onion extracts. The mycelial growth of two tested fungi cultured on yeast extract–sucrose broth was completely inhibited in the presence of the Welsh onion ethanol extract at a concentration of 10 mg/ml during 30 days of incubation at 25°C. The extracts added to the cultures also inhibited aflatoxin production at a concentration of 10 mg/ml or permitted only a small amount of aflatoxin production with extract concentration of 5 mg/ml after 2 weeks of incubation. Welsh onion ethanol extracts showed more pronounced inhibitory effects against the two tested aflatoxin-producing fungi than did the same added levels of the preservatives sorbate and propionate at pH values near 6.5.


2020 ◽  
Vol 56 (No. 2) ◽  
pp. 74-82 ◽  
Author(s):  
Antonios Zambounis ◽  
Oksana Sytar ◽  
Dimitris Valasiadis ◽  
Zoe Hilioti

The phytopathogenic oomycetes of the genus Phytophthora cause devastating economic losses worldwide.<br />Naphthodianthrone compounds, present in plant extracts of buckwheat and Saint John’s wort act as photosensitiser<br />agents and exhibit antimicrobial activity against a number of pathogens. In this study, we investigated the potential<br />inhibitory effects of fagopyrin and hypericin on Phytophthora citrophthora (R.E. Sm. &amp; E.H. Sm.) Leonian 1906, the<br />main causal agent of rot diseases in deciduous trees. Fagopyrin had the highest inhibitory effect in the colony growth<br />at a concentration of 2% of a stock solution (3 mg/mL), inducing clubbed hyphae with round tips. Notably, hypericin<br />also inhibited the radial colony growth and increased the hyphal branching at the subapical region, while also promoting<br />the formation of enlarged cells with irregular shapes growing collectively as biofilm-like structures. In terms of the<br />mycelial dry weight, although both photosensitisers had considerable inhibitory effects, the fagopyrin treatment was<br />most effective. Leaf bioassays showed that under dark conditions the photosensitiser pre-treated zoospores formed a<br />dense, but aberrant, mycelial growth with penetration defects. In contrast, when the zoospore production was performed<br />under light conditions, the zoospores failed to cause necrotic lesions and penetration events implying that their<br />virulence was impaired. These findings shed light on the biological effects of fagopyrin and hypericin in the regulation<br />of the mycelial growth, morphology and pathogenicity of P. citrophthora.


2013 ◽  
Vol 136 (2) ◽  
pp. 789-793 ◽  
Author(s):  
Flavio Dias Ferreira ◽  
Carlos Kemmelmeier ◽  
Carla Cristina Arrotéia ◽  
Christiane Luciana da Costa ◽  
Carlos Augusto Mallmann ◽  
...  

2011 ◽  
Vol 343-344 ◽  
pp. 1168-1171 ◽  
Author(s):  
Liang Bin Hu ◽  
Hong Bo Li ◽  
Jun Liang Sun ◽  
Jie Zeng

Control of aflatoxin contamination has been a worldwide problem. Laminarin from Laminaria digitata is one kind of polysaccharides with multiple biological activities. In this paper, the inhibitory effects of Laminarin on the growth and toxin production of A. flavus was studied. The results indicated that 150 and 200 µg/mL of Laminarin ccould significantly inhibit the aflatoxin production in Sabouraud liquid medium (Sab), without affecting mycelium growth. In addition, the results also showed that certain concentration Laminaria could decrease the infection of peanut seeds by A. flavus as well as the contamination by aflatoxin B1.


1999 ◽  
Vol 89 (10) ◽  
pp. 902-907 ◽  
Author(s):  
Z.-Y. Chen ◽  
R. L. Brown ◽  
J. S. Russin ◽  
A. R. Lax ◽  
T. E. Cleveland

In this study, we found that the inhibition of fungal growth in potato dextrose broth (PDB) medium by the 14-kDa corn trypsin inhibitor (TI) protein, previously found to be associated with host resistance to aflatoxin production and active against various fungi, was relieved when exogenous α-amylase was added along with TI. No inhibitory effect of TI on fungal growth was observed when Aspergillus flavus was grown on a medium containing either 5% glucose or 1% gelatin as a carbon source. Further investigation found that TI not only inhibited fungal production of extracellular α-amylase when A. flavus was grown in PDB medium containing TI at 100 μg ml-1 but also reduced the enzymatic activity of A. flavus α-amylase by 27%. At a higher concentration, however, TI stimulated the production of α-amylase. The effect of TI on the production of amyloglucosidase, another enzyme involved in starch metabolism by the fungus, was quite different. It stimulated the production of this enzyme during the first 10 h at all concentrations studied. These studies suggest that the resistance of certain corn genotypes to A. flavus infection may be partially due to the ability of TI to reduce the production of extracellular fungal α-amylase and its activity, thereby limiting the availability of simple sugars for fungal growth. However, further investigation of the relationship between TI levels and fungal α-amylase expression in vivo is needed.


2018 ◽  
Vol 8 (9) ◽  
pp. 1655 ◽  
Author(s):  
Hyeong-Mi Kim ◽  
Hyunwoo Kwon ◽  
Kyeongsoon Kim ◽  
Sung-Eun Lee

Aspergillus flavus and A. parsiticus produce aflatoxins that are highly toxic to mammals and birds. In this study, the inhibitory effects of 1,8-cineole and t-cinnamaldehyde were examined on the growth of Aspergillus flavus ATCC 22546 and aflatoxin production. 1,8-Cineole showed 50% inhibition of fungal growth at a concentration of 250 ppm, while t-cinnamaldehyde almost completely inhibited fungal growth at a concentration of 50 ppm. Furthermore, no fungal growth was observed when the growth medium was treated with 100 ppm t-cinnamaldehyde. 1,8-Cineole also exhibited 50% inhibition on the production of aflatoxin B1 and aflatoxin B2 at a concentration of 100 ppm, while the addition of 100 ppm t-cinnamaldehyde completely inhibited aflatoxin production. These antiaflatoxigenic activities were related to a dramatic downregulation of the expression of aflE and aflL by 1,8-cineole, but the mode of action for t-cinnamaldehyde was unclear. Collectively, our results suggest that both of the compounds are promising alternatives to the currently used disinfectant, propionic acid, for food and feedstuff preservation.


Author(s):  
Maryam Akbari Dana ◽  
Sasan Rezaie ◽  
Parivash Kordbacheh ◽  
Roshanak Daei Ghazvini ◽  
Maryam Moazeni ◽  
...  

Abstract Objective: Aflatoxin is known as one of the most important mycotoxins that threatens of human life. The toxin is produced by Aspergillus species which are common cause of contamination of agricultural products. For this reason, the use of organic compounds has always been considered in order to inhibit the growth of fungi and production of toxin. The aim of this study was to investigate the effect of vitamin C on the growth rate of fungi and the level of aflR gene expression (gene responsible for aflatoxin production). Material and method: At first, Aspergillus parasiticus ATCC15517 was cultured in SDA medium containing vitamin C with concentrations of 200, 100, 50, 25, 12.5, 6.25, 3.1 mg / ml at 28 ° C for 72 hours. Then, the amount of aflatoxin produced in the presence of vitamin C was measured by HPLC method. Finally, by extracting the DNA of cultured samples, the aflR gene expression level was evaluated by real-time PCR at different concentrations of vitamin C. Result: The results showed that the deformation of mycelium was started in medium with 50 mg / ml of vitamin C and only fungal spores were observed at higher concentrations. The results of measurement of toxin showed that the level of total aflatoxin and the subset of B 1, B 2, G 1 and G 2 were 5.9, 1.9, 0.2, 3.5 and 0.3 ppm in the presence of vitamin, respectively. While without the presence of vitamin C, these values were 207.5, 73.6, 4.5, 123.4, 6 ppm, respectively. Measuring the expression level of aflR genes, showed that at a concentration of 25 mg / ml of vitamin C, the level of gene expression is down 68%, and at the concentration of 50 mg / ml, the level of gene expression is decreased up to 81%. Conclusion: This study showed that vitamin C, as a human-compatible compound, could be considered as a good way to keep agricultural products from fungal aflatoxin.


Sign in / Sign up

Export Citation Format

Share Document