scholarly journals Prediction of Low-Temperature Rheological Properties of SBS Modified Asphalt

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Qian Chen ◽  
Chaohui Wang ◽  
Liang Song

The extreme learning machine (ELM) algorithm optimized by genetic algorithm (GA) was used to quickly predict the low-temperature rheological properties of styrenic block copolymer (SBS) modified asphalt through the properties of the raw materials. In this work, one hundred groups of survey data and test data were collected and analyzed. Fourteen vital raw material parameters, such as chemical composition indexes of matrix asphalt and technical indexes of SBS modifier, were selected as the input parameter. The stiffness modulus and m-value of SBS modified asphalt were taken as the output parameter. Then, the GA-ELM prediction model of low-temperature rheological properties was established. According to comparison and analysis with other prediction models, the accuracy and output stability of the GA-ELM prediction model were verified. The results show that the GA-ELM model had obvious accuracy and efficiency. It can be used to predict the low-temperature rheological properties of SBS modified asphalt. Compared with the traditional prediction models, the error of the GA-ELM model was reduced by 68.97–81.48%.

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Yanbo Wang ◽  
Ailian Liu ◽  
Weixiang Ding ◽  
Fangping Rao ◽  
Jun Yuan ◽  
...  

This research explores the effects of using waste engine oil bottom on physical, rheological properties and composite modification mechanism of SBS-modified asphalt. The SBS asphalt binder was modified by WEOB with different concentrations (2, 4, and 6 wt%). The GC-MS and FTIR spectrometry were conducted to evaluate the chemical compositions of WEOB- and WEOB-modified asphalt. RV, DSR, and BBR were tested to evaluate high- and low-temperature pavement performance. Fluorescence microscope (FM) test, bar thin layer chromatograph (BTLC) test, and AFM test were performed to evaluate the micromorphologies and modification mechanism. The test results showed that a new characteristic peak appeared in the infrared spectrum of the WEOB-modified SBS asphalt, indicating a chemical reaction in the modification process. Incorporation of WEOB improves both the high-temperature and low-temperature properties of the SBS asphalt binder. It was confirmed that with the increase of WEOB concentration, the content of colloid gradually increases, which promotes the swelling and compaction of SBS polymer network structure. Furthermore, WEOB promotes the polarity of SBS and forms graft product MAH-g-SBS with asphalt, thus inhibiting the thermal movement of asphalt molecules. On the contrary, light components have a good correlation with the surface roughness of modified asphalt; the results show that the modified asphalt has good rutting resistance.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guangyuan Wu ◽  
Haitao Zhang ◽  
Junfeng Sun ◽  
Tengjiang Yu

Purpose In order to evaluate the rheological properties of asphalt more comprehensively and effectively, and to explore and discuss the practicability of relevant models in the evaluation of the rheological properties of asphalt. Design/methodology/approach Based on the rheological and viscoelastic theories, temperature scanning, frequency scanning and multiple stress creep recovery (MSCR) tests of different modified asphalt were carried out by dynamic shear rheometer (DSR) to obtain relevant viscoelastic parameters and evaluate the high temperature properties of different modified asphalt. Based on the time-temperature equivalence principle, the main curve was constructed to study the viscoelastic properties of asphalt in a wider frequency domain. The main curve was fitted with the CAM model, and the rheological properties of different modified asphalt were evaluated through the analysis of model parameters. The creep stiffness and creep velocity of different modified asphalt were obtained through the rheological test of bending beam (BBR), and the low-temperature performance of different modified asphalt was analyzed by using Burgers model to fit the creep compliance. Findings The results show that the high temperature rheological properties of several modified asphalt studied in the test are ranked from best to worst as follows: PE modified asphalt > SBS modified asphalt > SBR modified asphalt. Short-term aging can improve the high temperature performance of asphalt, and different types of modifiers can promote or inhibit this improvement effect. Based on BBR test and Burgers model fitting analysis, SBR modified asphalt has the best low temperature performance, followed by SBS modified asphalt, while PE modified asphalt has poor low temperature performance, so it is not suitable to be used as road material in low temperature area. Originality/value Combined with effective evaluation methods, the rheological properties of asphalt at different temperatures and angles were systematically evaluated, and the evolution of rheological properties of asphalt characterized by model parameters was further analyzed by advanced model simulation.


2014 ◽  
Vol 599 ◽  
pp. 141-144
Author(s):  
Fei Guo ◽  
Ling Pang ◽  
Zi Qiang Peng ◽  
Zu Huang Zhu

Rejuvenating seal, widely used due to its economic benefits and convenience, is one of the preventive maintenance methods. The rejuvenating seal materials (RSM) work on the surface course of asphalt pavement. This paper described the effects of RSM on the physical properties and rheological properties of aged SBS modified asphalt (ASMA). Two RSM, R and C, were involved in this research. The dosage of each RSM was 2%, 4%, 6%, 8%, and 10% of ASMA by weight. Physical properties, including softening point, penetration and ductility, were tested. Rheological properties were carried out by means of dynamic shear rheometer (DSR). Results show that RSMs, R and C, have improved the low-temperature performance and fatigue resistance. R has more positive effect on low-temperature performance and fatigue resistance of ASMA compared to values of C.


2019 ◽  
Vol 16 (3) ◽  
pp. 334-351
Author(s):  
A. S. Mavlyanov ◽  
E. K. Sardarbekova

Introduction. The objective of the research is to study the effect of the complex activation of the alumina raw material on the rheological properties of the ceramic mass. In addition, the authors investigate solutions for the application of optimal coagulation structures based on loams and ash together with plastic certificates.Materials and methods. The authors used the local forest like reserves of clay loams at the BashKarasu, ash fields of the Bishkek Central Heating Centre (BTEC) and plasticizer (sodium naphthenate obtained from alkaline chemical production wastes) as fibrous materials. Moreover, the authors defined technological properties of raw materials within standard laboratory methodology in accordance with current GOSTs.Results. The researchers tested plastic durability on variously prepared masses for the choice of optimal structures. The paper demonstrated the plastic durability of complexly activated compounds comparing with non-activated and mechanically activated compounds. The sensitivity coefficient increased the amount of clay loams by mechanically and complexly activated, which predetermined the possibility of intensifying the process of drying samples based on complexly activated masses.Discussion and conclusions. However, mechanical activation of clay material reduces the period of relaxation and increases the elasticity coefficient of ceramic masses by 1.8–3.4 times, meanwhile decreases elasticity, viscosity and the conventional power during molding, which generally worsens the molding properties of the masses. Сomplex activation of ash-clay material decreases the period of relaxation and provides an increase in elasticity, plasticity of ceramic masses by 46–47%, reduction in viscosity by 1.5–2 times, conventional power on molding by 37–122% in comparison with MA clay loams. Ceramic masses based on spacecraft alumina raw materials belong to the SMT with improved rheological properties; products based on them pass through the mouthpiece for 5–7 seconds.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2249
Author(s):  
Bei Chen ◽  
Fuqiang Dong ◽  
Xin Yu ◽  
Changjiang Zheng

In order to solve the problems caused by asphalt diseases and prolong the life cycle of asphalt pavement, many studies on the properties of modified asphalt have been conducted, especially polyurethane (PU) modified asphalt. This study is to replace part of the styrene-butadiene-styrene (SBS) modifier with waste polyurethane (WP), for preparing WP/SBS composite modified asphalt, as well as exploring its properties and microstructure. On this basis, this paper studied the basic performance of WP/SBS composite modified asphalt with a conventional performance test, to analyze the high- and low-temperature rheological properties, permanent deformation resistance and storage stability of WP/SBS composite modified asphalt by dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The microstructure of WP/SBS composite modified asphalt was also observed by fluorescence microscope (FM) and Fourier transform infrared spectroscopy (FTIR), as well as the reaction between WP and asphalt. According to the results of this study, WP can replace SBS as a modifier to prepare WP/SBS composite modified asphalt with good low-temperature resistance, whose high-temperature performance will be lower than that of SBS modified asphalt. After comprehensive consideration, 4% SBS content and 15% WPU content (4 S/15 W) are determined as the suitable types of WPU/SBS composite modified asphalt.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 681
Author(s):  
Monika Sterczyńska ◽  
Marek Zdaniewicz ◽  
Katarzyna Wolny-Koładka

During the production of beer, and especially beer wort, the main wastes are spent grain and hot trub, i.e., the so-called “hot break.” Combined with yeast after fermentation, they represent the most valuable wastes. Hot trub is also one of the most valuable by-products. Studies on the chemical composition of these sediments and their rheological properties as waste products will contribute to their effective disposal and even further use as valuable pharmaceutical and cosmetic raw materials. So far, hot trub has been studied for morphology and particle distribution depending on the raw material composition and beer wort extract. However, there are no preliminary studies on the rheological properties of hot trub and hops. In particular, no attention has yet been paid to the dependence of these properties on the hop variety or different protein sources used. The aim of this study was to examine the effect of different hopping methods on hot trub viscosity and beer wort physicochemical parameters. Additionally, the hop solutions were measured at different temperatures. A microbiological analysis of hop sediments was also performed to determine the post-process survival of selected microorganisms in these wastes. For manufacturers of pumps used in the brewing industry, the most convenient material is that of the lowest viscosity. Low viscosity hot trub can be removed at lower velocities, which reduces costs and simplifies washing and transport. The sediments also had similar equilibrium viscosity values at high shear rates.


2014 ◽  
Vol 37 (3) ◽  
pp. 943-948 ◽  
Author(s):  
Jinyu Pang ◽  
Sujun Du ◽  
Runtian Chang ◽  
Dongxia Cui

2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Xiangbing Xie ◽  
Tao Hui ◽  
Yaofei Luo ◽  
Han Li ◽  
Guanghui Li ◽  
...  

Strong ultraviolet light and low-temperature are the typical environmental characteristics in high-altitude areas. The performance of SBS-modified asphalt in the above environmental characteristics needs further study. To improve the resistance ultraviolet (UV) ageing and low-temperature performance of copolymer- (SBS-) modified asphalt, an SBS-modified asphalt containing nano-ZnO and nano-TiO2 is proposed. In this paper, nano-ZnO, nano-TiO2, and SBS were used as modifiers with the silane coupling agent (KH-560) as the nanomaterial surface modification. The orthogonal test table was used to analyse the effects of the three modifiers on the physical properties of modified asphalt at different dosages. On this basis, the physical properties, low-temperature properties, and ageing indices (carbonyl index and sulfoxide index) were studied for base asphalt, SBS-modified asphalt, nano-ZnO/SBS-modified asphalt, and nano-ZnO/nano-TiO2/SBS composite-modified asphalt before and after photoaging. The content changes of characteristic elements (Zn and Ti) in the nano-ZnO/nano-TiO2/SBS composite-modified asphalt before and after ageing were studied by scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), and the UV ageing mechanism was revealed. The results indicate that two nanoparticles show the best compatibility with asphalt after surface modification and can improve the binding ability between SBS and base asphalt. The orthogonal test analysis shows that nano-ZnO has a highly significant effect on the low- and high-temperature performance of the nano-ZnO/nano-TiO2/SBS composite-modified asphalt, and nano-TiO2 has a significant effect on the high-temperature performance. Three optimal composite-modified systems for base asphalt including 4% nano-ZnO/1.5% nano-TiO2/3.2% SBS were proposed and had the best antiaging ability. Compared with the sulfoxide index, the carbonyl index changed most obviously before and after ageing. Additionally, the results reveal that nano-TiO2 has a good absorption effect at a wavelength of 365 nm (ultraviolet light), while nano-ZnO is liable to photolysis, and its activity decreases at this wavelength.


2010 ◽  
Vol 115 (6) ◽  
pp. 3409-3422 ◽  
Author(s):  
Abigail Martínez-Estrada ◽  
A. Enrique Chávez-Castellanos ◽  
Margarita Herrera-Alonso ◽  
Rafael Herrera-Nájera

Sign in / Sign up

Export Citation Format

Share Document