scholarly journals Overburden Migration and Failure Characteristics in Mining Shallow Buried Coal Seam with Thick Loose Layer

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhuhe Xu ◽  
Quansheng Li ◽  
Xiaobin Li

Quite a number of shallow buried coal seams (SBCS) are distributed in China. The overburden is easily damaged due to the mining of SBCS, resulting in water resources loss and surface damage. Taking 12403 working face of Wulanmulun coal mine in Shendong mining area as an example, this paper analyzed the overburden migration and failure characteristics after mining SBCS with thick loose layer based on actual measurement data and simulation results. The results show that the subsidence of strata in caving zone has no skewness feature along strike direction, while the subsidence of strata in fracture zone and bending subsidence zone shows skewness subsidence phenomenon. An interface exists in the overburden, and the movements of upper and lower strata at the interface have different characteristics. The cracks penetrating the whole strata exist in bedrock, not in aeolian sand. The height of water flowing fracture zone is 35.74 m–62.89 m according to the loss of fluid in the borehole and consistent with the results of numerical simulation and similar simulation. This study can provide a reference for the prediction of the height of water flowing fracture zone and the overburden migration in mining SBCS.

2014 ◽  
Vol 945-949 ◽  
pp. 1169-1174
Author(s):  
Xian Tao Zeng ◽  
Ning Wang ◽  
Cong Jiang ◽  
Yun Yi Zhang ◽  
Chang Hai He

In this paper, design of roadway with stope working face Yeqing 8459 had been optimized combined with geological characteristics of the working face based on the actual measurement of ground stress and mechanical properties of coal rock of Yangquhe mine in Feng Feng mining area. Analyzing eight kinds of roadway support design scheme through numerical simulation and evaluating the supporting effect of each supporting design scheme, designating the construction guidelines ultimately.


2020 ◽  
Vol 198 ◽  
pp. 02003
Author(s):  
Yang Xue ◽  
Huang Jingwu ◽  
Wang Hua ◽  
Liang Maoliang ◽  
Li Wei ◽  
...  

Collapse column water bursting occurs from time to time in the coal mining process of North China Type Coalfield in China, which causes great economic loss and personal injury. Therefore, great attention must be paid to the harm of collapse column. 1301 working face and 1306 working face in the west wing of No.1 Mining District of Zhangji Coal Mine in Shanxian County are close to No.2 collapse column. Water bursting risk evaluation must be carried out before mining two working faces to ensure safety production. On the basis of fully analyzing the geological and hydrogeological conditions of the 3up coal seam in the west wing of No.1 Mining Area, the "Three Zones(caving zone, water conducted fracture zone and sagging zone) Theory of Coal Seam Roof", "Strata Movement Theory" and "Water Bursting Coefficient Theory" were used respectively to calculate and evaluate the water bursting risk of No.2 collapse column during the course of mining the 1301 working face and 1306 working face. The results show that: firstly, in the process of mining the 1301 working face, the maximum height of the water conducted fracture zone at the closest position of 1301 working face to No.2 collapse column would be 60.20 m, the water bursting coefficient on the boundary of water conducted fracture zone would be 0.066~0.072 MPa/m, and the water bursting risk of the No.2 collapse column would be smaller; secondly, in the process of mining the 1306 working face, the maximum height of the water conducted fracture zone at the closest position of 1306 working face to No.2 collapse column would be 60.91 m, the water bursting coefficient on the boundary of water conducted fracture zone would be 0.057~0.089 MPa/m, and the water burst risk of the No.2 collapse column would be small. By August 31, 2020, the 1301 working face had been safely mined more than 200 meters long(exceeding over 120 m of the closest position in 1301 working face to No.2 collapse column), and the water bursting did not happen in the working face. This paper can provide a reference for the water prevention and control of similar collapse columns in coal mines.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Qilong Xue ◽  
Ruihe Wang ◽  
Baolin Liu ◽  
Leilei Huang

In the oil and gas drilling engineering, measurement-while-drilling (MWD) system is usually used to provide real-time monitoring of the position and orientation of the bottom hole. Particularly in the rotary steerable drilling technology and application, it is a challenge to measure the spatial attitude of the bottom drillstring accurately in real time while the drillstring is rotating. A set of “strap-down” measurement system was developed in this paper. The triaxial accelerometer and triaxial fluxgate were installed near the bit, and real-time inclination and azimuth can be measured while the drillstring is rotating. Furthermore, the mathematical model of the continuous measurement was established during drilling. The real-time signals of the accelerometer and the fluxgate sensors are processed and analyzed in a time window, and the movement patterns of the drilling bit will be observed, such as stationary, uniform rotation, and stick–slip. Different signal processing methods will be used for different movement patterns. Additionally, a scientific approach was put forward to improve the solver accuracy benefit from the use of stick–slip vibration phenomenon. We also developed the Kalman filter (KF) to improve the solver accuracy. The actual measurement data through drilling process verify that the algorithm proposed in this paper is reliable and effective and the dynamic measurement errors of inclination and azimuth are effectively reduced.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2647
Author(s):  
Gang Wang ◽  
Cheng Fan ◽  
Hao Xu ◽  
Xuelin Liu ◽  
Rui Wang

Accurately determining the height of the gas-guiding fracture zone in the overlying strata of the goaf is the key to find the height of the long horizontal borehole in the roof. In order to determine the height, in this study we chose the 6306 working face of Tangkou Coal Mine in China as a research example and used both the theoretical model and discrete element method (DEM) numerical simulation to find the height of the gas-guiding fracture zone and applied the height to drill a long horizontal borehole in the roof of the 6303 working face. Furthermore, the borehole was utilized to deep into the roof for coalbed methane drainage and the results were compared with conventional gas drainage measures from other aspects. The height of the gas-guiding fracture zone was found to be 48.57 m in theoretical model based on the bulk coefficient and the void ratio and to be 51.19 m in the DEM numerical simulation according to the temporal and spatial variation characteristics of porosity. Taking both the results of theoretical analysis and numerical simulation into consideration, we determined that gas-guiding fracture zone is 49.88 m high and applied it to drill a long horizontal borehole deep into the roof in the 6303 working face field. Compared with conventional gas drainage measures, we found that the long horizontal borehole has the high stability, high efficiency and strong adaptability for methane drainage.


Author(s):  
A. Stamatis ◽  
N. Aretakis ◽  
K. Mathioudakis

An approach for identification of faults in blades of a gas turbine, based on physical modelling is presented. A measured quantity is used as an input and the deformed blading configuration is produced as an output. This is achieved without using any kind of “signature”, as is customary in diagnostic procedures for this kind of faults. A fluid dynamic model is used in a manner similar to what is known as “inverse design methods”: the solid boundaries which produce a certain flow field are calculated by prescribing this flow field. In the present case a signal, corresponding to the pressure variation on the blade-to-blade plane, is measured. The blade cascade geometry that has produced this signal is then produced by the method. In the paper the method is described and applications to test cases are presented. The test cases include theoretically produced faults as well as experimental cases, where actual measurement data are shown to produce the geometrical deformations which existed in the test engine.


2018 ◽  
Vol 7 (5) ◽  
pp. 416-424
Author(s):  
Tsutomu Miyauchi ◽  
Kenji Imamoto ◽  
Keiko Teramura ◽  
Hirotaka Takahashi

2013 ◽  
Vol 742 ◽  
pp. 497-500
Author(s):  
Meng Lin Xu ◽  
De Shen Zhao

Based on actual measurement data in Da Ping as the samples,according to the experience, and ends with calculate every factors weight and height prediction of the water conducted zone by Matlab using the combination entropy-weight method and analytic hierarchy process. this paper introduces a comprehensive prediction model consisting of analytic hierarchy process and combination entropy-weight method. The method,overcoming weights imbalance,gives the evaluation result better than does the single analytic hierarchy process, it is a new valid method for scientific forecast on water conducted zone.


Author(s):  
R. Lunderstädt ◽  
K. Fiedler

In the paper to be presented diagnostic procedures on the basis of a gas path analysis are applied on a two-shaft jet engine. Starting from the mathematical model of the engine a filter-algorithm is used which delivers from actual measurement data the state of the engine for different working conditions. The procedure is proven for some examples and discussed in regard of its practical significance.


2020 ◽  
Author(s):  
Xiaoyu Wang ◽  
Peng Liu ◽  
Gongwen Xu

Abstract The thermal environment and microclimate of heritage sites has been severely impacted by rapid urbanization. This study collected various meteorological measurement data as a reference for computational fluid dynamics (CFD) simulation settings. Then CFD was applied to simulate the impact of lawns on the thermal environment and microclimate of Fuling Mausoleum. We found that lawns and soil can cool the air through evaporation, and thus have a specific cooling effect on the bricked ground. After lawns were planted, the bricked ground temperature decreased by 1.56–17.54°C than that before lawns were planted at 14:00, a decrease of 2.68%–24.20%. Under normal circumstances, when the wind speed or relative humidity increased, the ground temperature dropped. Greenbelt vegetation can adjust the microclimate and human thermal comfort indicators. The consistency of the difference between the actual measurement and the CFD simulation results shows that CFD simulation can thus accurately reflect the internal temperature field distribution if the selection of simulation parameters is reasonable. Theoretical calculation and analysis, experimental measurement research, and modern computer simulation analysis methods applied together constitute a complete system for studying modern physical environmental problems and can provide reliable and economic results.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Denghong Chen ◽  
Chao Li ◽  
Xinzhu Hua ◽  
Xiaoyu Lu ◽  
Yongqiang Yuan ◽  
...  

Taking the occurrence conditions of the hard main roof in the deep 13-1 coal mining roadway in Huainan mining area as the research object, based on the mechanical parameters of the surrounding rock and the stress state of the main roof obtained by numerical simulation, a simply supported beam calculation model was established based on the damage factor D, main roof support reaction RA, RB, and critical range C (9 m) and B (7 m) at the elastoplastic junction of the solid coal side and mining face side (hereinafter referred to as “junction”). Considering that the damage area still has a large bearing capacity, the vertical stress of the main roof at the junction is K1γH (0.05γh, 0.15γh, and 0.25γh) and K2γH (0.01γh, 0.10γh, and 0.2γh). The maximum deflection is 21 mm, 324 mm, and 627.6 mm, respectively. According to the criterion of tensile failure, the maximum bending moment of the top beam is 209 mN·m at the side of the working face 3.1 m away from the roadway side when K1 = 0.15 and K2 = 0.10, and the whole hard main roof is in tensile failure except the junction. To control the stability of the top beam and simplify the supporting reaction to limit the deformation of the slope angle, RC and RD are used to construct the statically indeterminate beam. By adding an anchor cable and advance self-moving support to the roadway side angle, the problem of difficult control of the surrounding rock with a large deformation of the side angle roof is solved, which provides a reference for roof control under similar conditions.


Sign in / Sign up

Export Citation Format

Share Document