scholarly journals Promotion of Hair Growth by Conditioned Medium from Extracellular Matrix/Stromal Vascular Fraction Gel in C57BL/6 Mice

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shune Xiao ◽  
Yurong Deng ◽  
Xiaojin Mo ◽  
Zhiyuan Liu ◽  
Dali Wang ◽  
...  

Adipose-derived stem cell- (ADSC-) based regenerative medicine has expanded to include the treatment of hair loss. However, stem cell therapy remains a relatively recent technique, and reports of its use for treating alopecia are rare. ADSCs exert biological functions via the paracrine actions of various growth factors and cytokines. Conditioned medium from ADSCs (ADSCs-CM) is a cell-free suspension rich in growth factors and cytokines that has demonstrated a significant role in stimulating hair growth, with encouraging outcomes in terms of hair regeneration and hair growth. Extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel) is an ADSC- and adipose native extracellular matrix-enriched product for cytotherapy. In this study, we compared the effects of CM from ECM/SVF-gel (ECM/SVF-CM) and from stem cells (SVF-CM) on hair growth in mice. ECM/SVF-CM stimulated hair growth more than SVF-CM, through promoting the proliferation of dermal papilla cells and cells in the bulge, neovascularization, and anagen induction. ECM/SVF-CM might, thus, provide an effective and improved strategy for promoting hair growth. These data provide a theoretical foundation for the clinical administration of ECM/SVF-CM for the treatment of hair loss.

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4360
Author(s):  
Kristelle Hughes ◽  
Raimana Ho ◽  
Stéphane Greff ◽  
Edith Filaire ◽  
Edwige Ranouille ◽  
...  

Hair loss is becoming increasingly prevalent as dietary and living habits change. The search for natural products to limit hair loss has led to tapping into traditional cosmetic knowledge. We studied three plants of the Polynesian cosmetopoeia, Bidens pilosa, Calophyllum inophyllum and Fagraea berteroana, to determine their ability to promote hair growth. Their chemical content was characterized by liquid chromatography coupled to mass spectrometry (LC-MS). Their proliferative activity on dermal papilla cells (DPCs) was assessed via MTT assay and molecular targets were evaluated by RT-qPCR analysis of seven factors involved in the modulation of the hair cycle, CCND1, LEF1, DKK1, WNT5A PPARD, TGFΒ1, PPARD and RSPO2. Our results show that our extracts significantly increased proliferation of dermal papilla cells. Furthermore, LC-MS/MS analysis revealed a diversity of molecules, flavonoids, iridoids and organic acids, some known for hair-inducing properties. Finally, specific extracts and fractions of all three plants either upregulated CCND1, LEF1 and PPARD involved in stimulating hair follicle proliferation and/or lowered the gene expression levels of hair growth inhibiting factors, DKK1 and TGFB1. Our findings suggest that extracts from B. pilosa, C. inophyllum and F. berteroana are interesting candidates to stimulate hair growth.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2117
Author(s):  
Hwa Sun Ryu ◽  
JiYeon Jeong ◽  
Chun Mong Lee ◽  
Kwang Sik Lee ◽  
Jung-No Lee ◽  
...  

Hair loss by excessive stress from work and lifestyle changes has become a growing concern, particularly among young individuals. However, most drugs for alopecia impose a plethora of side effects. We have found the powerful impact of Malva verticillata seed extracts on alleviating hair loss. This study further isolated effective chemicals in M. verticillata seed extracts by liquid silica gel column chromatography. Under the screening for the growth rate (%) of human follicles dermal papilla cells (HFDPCs), we identified linoleic acid (LA) and oleic acid in n-hexane of M. verticillate (MH)2 fraction. LA treatment activated Wnt/β-catenin signaling and induced HFDPCs growth by increasing the expression of cell cycle proteins such as cyclin D1 and cyclin-dependent kinase 2. LA treatment also increased several growth factors, such as vascular endothelial growth factor, insulin-like growth factor-1, hepatocyte growth factor, and keratinocyte growth factor, in a dose-dependent manner. Besides, LA significantly inhibited Dickkopf-related protein expression (DKK-1), a primary alopecia signaling by dihydrotestosterone. Our findings suggest that LA treatment may alleviate a testosterone-induced signaling molecule and induces HFDPCs growth by activating Wnt/β-catenin signaling.


2008 ◽  
Vol 197 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Valerie A Randall ◽  
Tracey J Jenner ◽  
Nigel A Hibberts ◽  
Isabel O De Oliveira ◽  
Tayyebeh Vafaee

Androgens stimulate many hair follicles to alter hair colour and size via the hair growth cycle; in androgenetic alopecia tiny, pale hairs gradually replace large, pigmented ones. Since stem cell factor (SCF) is important in embryonic melanocyte migration and maintaining adult rodent pigmentation, we investigated SCF/c-Kit signalling in human hair follicles to determine whether this was altered in androgenetic alopecia. Quantitative immunohistochemistry detected three melanocyte-lineage markers and c-Kit in four focus areas: the epidermis, infundibulum, hair bulb (where pigment is formed) and mid-follicle outer root sheath (ORS). Colocalisation confirmed melanocyte c-Kit expression; cultured follicular melanocytes also exhibited c-Kit. Few ORS cells expressed differentiated melanocyte markers or c-Kit, but NKI/beteb antibody, which also recognises early melanocyte-lineage antigens, identified fourfold more cells, confirmed by colocalisation. Occasional similar bulbar cells were seen. Melanocyte distribution, concentration and c-Kit expression were unaltered in balding follicles. Androgenetic alopecia cultured dermal papilla cells secreted less SCF, measured by ELISA, than normal cells. This identifies three types of melanocyte-lineage cells in human follicles. The c-Kit expression by dendritic, pigmenting, bulbar melanocytes and rounded, differentiated, non-pigmenting ORS melanocytes implicate SCF in maintaining pigmentation and migration into regenerating hair bulbs. Less differentiated, c-Kit-independent cells in the mid-follicle ORS stem cell niche and occasionally in the bulb, presumably a local reserve for long scalp hair growth, implicate other factors in activating stem cells. Androgens appear to reduce alopecia hair colour by inhibiting dermal papilla SCF production, impeding bulbar melanocyte pigmentation. These results may facilitate new treatments for hair colour changes in hirsutism, alopecia or greying.


2019 ◽  
Vol 20 (8) ◽  
pp. 1859 ◽  
Author(s):  
Phil June Park ◽  
Eun-Gyung Cho

Adiponectin (APN), released mainly from adipose tissue, is a well-known homeostatic factor for regulating glucose levels, lipid metabolism, and insulin sensitivity. A recent study showed that human hair follicles express APN receptors and the presence of APN-mediated hair growth signaling, thereby suggesting that APN is a potent hair growth-promoting adipokine. Previously, kojyl cinnamate ester derivatives (KCEDs) were synthesized in our institute as new anti-aging or adiponectin-/adipogenesis-inducing compounds. Here, we tested the activity of these derivatives to induce endogenous APN secretion. Among the derivatives, KCED-1 and KCED-2 showed improved activity in inducing APN mRNA expression, secretion of APN protein, and adipogenesis in human subcutaneous fat cells (hSCFs) when compared with the effects of Seletinoid G, a verified APN inducer. When human follicular dermal papilla cells were treated with the culture supernatant of KCED-1- or KCED-2-treated hSCFs, the mRNA expression of APN-induced hair growth factors such as insulin-like growth factor, hepatocyte growth factor, and vascular endothelial growth factor was upregulated compared with that in the control. Taken together, our study shows that among kojyl cinnamate ester derivatives, KCED-1, KCED-2, as well as Seletinoid G are effective inducers of endogenous APN production in subcutaneous fat tissues, which may in turn contribute to the promotion of hair growth in the human scalp.


2006 ◽  
Vol 642 (1) ◽  
pp. 436-438 ◽  
Author(s):  
RAPHAEL WARREN ◽  
MATTHEW H. CHESTNUT ◽  
TERESA K. WONG ◽  
THOMAS E. OTTE ◽  
KAREN M. LAMMERS ◽  
...  

1993 ◽  
Vol 101 (s1) ◽  
pp. 114S-120S ◽  
Author(s):  
Valerie Anne Randall ◽  
Margaret Julie Thornton ◽  
Andrew Guy Messenger ◽  
Nigel Andrew Hibberts ◽  
Andrew Stewart Irving Loudon ◽  
...  

1994 ◽  
Vol 107 (7) ◽  
pp. 1761-1772
Author(s):  
W. Filsell ◽  
J.C. Little ◽  
A.J. Stones ◽  
S.P. Granger ◽  
S.A. Bayley

The dermal papilla is a discrete group of cells at the base of the hair follicle and is implicated in controlling the hair growth cycle. Early passage dermal papilla cells can induce hair growth in vivo, but, upon further culturing, this property is lost. In order to study the events occurring in hair induction, a representative dermal papilla cell line was required. We have transfected passage 1 rat vibrissa dermal papilla cells with a polyomavirus large T gene encoding a temperature-sensitive T antigen, and generated permanent cell lines in which the immortalizing function can be switched off by temperature shift. The cells established without crisis, resembled cells in the starting population, and retained the aggregative properties of early passage dermal papilla cells. Growth studies were performed on the immortalized cell lines, which showed that transferring the cells to the restrictive temperature for the large T gene product resulted in cell senescence or quiescence, and changes in morphology. Implantation of cell pellets into the ears of immunologically compatible rats showed that the immortal cells retained hair-inductive ability. Cytokines are believed to have an important role in the control of hair growth. The pattern of cytokine gene expression in the immortal cell lines was compared with early passage dermal papilla cells and a non-hair-inducing dermal papilla cell line, using reverse transcriptase-polymerase chain reaction. Epidermal growth factor, tumour necrosis factor, and interleukin-1a were detected in the immortalized and non-hair-inducing dermal papilla cell lines, but were absent in passage 2 dermal papilla cells. All other cytokines examined were detected in all the cell types under study. These results demonstrate that the polyomavirus large Ttsa-immortalized dermal papilla cell lines are very similar to passage 2 dermal papilla cells and thus provide a good model for hair growth studies. Cytokine expression profiles indicate that the expression of several cytokines may be implicated in hair induction. Further studies are under way to investigate the relationship between cytokine expression and the hair growth cycle.


2020 ◽  
Vol 21 (14) ◽  
pp. 5137
Author(s):  
Jung Eun Kim ◽  
Yu Jin Lee ◽  
Hye Ree Park ◽  
Dong Geon Lee ◽  
Kwan Ho Jeong ◽  
...  

Topical or systemic administration of JAK inhibitors has been shown to be a new treatment modality for severe alopecia areata (AA). Some patients show a good response to JAK inhibitors, but frequently relapse after cessation of the treatment. There have been no guidelines about the indications and use of JAK inhibitors in treating AA. The basic pathomechanism of AA and the relevant role of JAK inhibitors should support how to efficiently use JAK inhibitors. We sought to investigate the effect of JAK1/2 inhibitor on an in vitro model of AA and to examine the possible mechanisms. We used interferon gamma-pretreated human dermal papilla cells (hDPCs) as an in vitro model of AA. Ruxolitinib was administered to the hDPCs, and cell viability was assessed. The change of expression of the Wnt/β-catenin pathway, molecules related to the JAK-STAT pathway, and growth factors in ruxolitinib-treated hDPCs was also examined by reverse transcription PCR and Western blot assay. We examined immune-privilege-related molecules by immunohistochemistry in hair-follicle culture models. Ruxolitinib did not affect the cell viability of the hDPCs. Ruxolitinib activated several molecules in the Wnt/β-catenin signaling pathway, including Lef1 and β-catenin, and suppressed the transcription of DKK1 in hDPCs, but not its translation. Ruxolitinib reverted IFN-γ-induced expression of caspase-1, IL-1β, IL-15, and IL-18, and stimulated several growth factors, such as FGF7. Ruxolitinib suppressed the phosphorylation of JAK1, JAK2 and JAK3, and STAT1 and 3 compared to IFN-γ pretreated hDPCs. Ruxolitinib pretreatment showed a protective effect on IFN-γ-induced expression of MHC-class II molecules in cultured hair follicles. In conclusion, ruxolitinib modulated and reverted the interferon-induced inflammatory changes by blocking the JAK-STAT pathway in hDPCs under an AA-like environment. Ruxolitinib directly stimulated anagen-re-entry signals in hDPCs by affecting the Wnt/β-catenin pathway and promoting growth factors in hDPCs. Ruxolitinib treatment prevented IFN-γ-induced collapse of hair-follicle immune privilege.


Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 267
Author(s):  
Kai-Che Wei ◽  
Wan-Ju Wei ◽  
Yi-Shan Liu ◽  
Li-Chen Yen ◽  
Tsung-Hsien Chang

Dengue virus (DENV)-mediated hair loss is one of the post-dengue fatigue syndromes and its pathophysiology remains unknown. Whether long-term or persistent infection with DENV in the scalp results in hair loss is unclear. In this study, we cultured human dermal fibroblasts (WS1 cells) and primary human hair-follicle dermal papilla cells (HFDPCs) in the long term with DENV-2 infection. The production of virion, the expression of inflammatory and anti-virus genes, and their signaling transduction activity in the infected cells were analyzed. DENV-2 NS3 protein and DENV-2 5′ UTR RNA were detected in fibroblasts and HFDPCs that were subjected to long-term infection with DENV-2 for 33 days. A significant amount of DENV-2 virion was produced by both WS1 cells and HFDPCs in the first two days of acute infection. The virion was also detected in WS1 cells that were infected in the long term, but HFDPCs failed to produce DENV-2 after long-term culture. Type I and type III interferons, and inflammatory cytokines were highly expressed in the acute phase of DENV infection in HFPDC and WS1 cells. However, in the long-term cultured cells, modest levels of anti-viral protein genes were expressed and we observed reduced signaling activity, which was correlated with the level of virus production changes. Long-term infection of DENV-2 downregulated the expression of hair growth regulatory factors, such as Rip1, Wnt1, and Wnt4. This in vitro study shows that the long-term infection with DENV-2 in dermal fibroblasts and dermal papilla cells may be involved with the prolonged-DENV-infection-mediated hair loss of post-dengue fatigue syndrome. However, direct evidence for viral replication in the human hair of a dengue victim or animal infection model is required.


Sign in / Sign up

Export Citation Format

Share Document