scholarly journals A Novel Strategy Facilitates Reference Gene Selection by RT-qPCR Analysis in Kidney Yang Deficiency Syndrome Mice Infected with the Influenza A (H1N1) Virus

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yepei Fu ◽  
Jia Yang ◽  
Shanshan Fan ◽  
Shaozhe Zhao ◽  
Syed Muhammad Ali Shah ◽  
...  

In reverse transcription-quantitative polymerase chain reaction (RT-qPCR) studies, endogenous reference genes are routinely used to normalize the expression of target gene studies. In order to precisely evaluate the relative expression of genes in the cells of mice suffering from Kidney Yang Deficiency Syndrome (KYDS) in response to influenza A virus (IAV) H1N1 using RT-qPCR, it is crucial to identify reliable reference genes. In the present study, 15 candidate reference genes (Actb, β2m, Gapdh, Gusb, Tuba, Grcc10, Eif4h, Rnf187, Nedd8, Ywhae, 18S rRNA, Rpl13, Ubc, Rpl32, and Ppia) were investigated in lung cells from KYDS mice infected with IAV H1N1. NormFinder, BestKeeper, and GeNorm were used to assess the stability of reference genes. The results were authenticated over extended experimental settings by a group of 10 samples. In the present study, we explored a novel method using dual-gene combinations; the difference in gene expression between the model and normal control groups was statistically analyzed by an independent-samples t-test, and the difference in the mean value between the two groups was compared. A P value > 0.05 and the lowest absolute value of the difference indicated the optimal reference two-gene combination. Four additional host innate immune system-related genes (TLR3, TLR4, TLR7, and RIG-I) were analyzed together with the two treatment datasets to confirm the selected reference genes. Our results indicated that none of these 15 candidate reference genes can be used as reference gene individually for relative quantitative fluorescence PCR analysis; however, the combination of Grcc10 and Ppia, based on the process of calculating the higher P value and lower difference values between groups, was the best choice as a reference gene for the lung tissue samples in KYDS mice infected with IAV. This technique may be applied to promote the selection process of the optimal reference gene in other experiments.

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 960
Author(s):  
Meagan Archer ◽  
Jianping Xu

Aspergillus is a genus of filamentous fungi with vast geographic and ecological distributions. Species within this genus are clinically, agriculturally and biotechnologically relevant, leading to increasing interest in elucidating gene expression dynamics of key metabolic and physiological processes. Reverse-transcription quantitative Polymerase Chain Reaction (RT-qPCR) is a sensitive and specific method of quantifying gene expression. A crucial step for comparing RT-qPCR results between strains and experimental conditions is normalisation to experimentally validated reference gene(s). In this review, we provide a critical analysis of current reference gene selection and validation practices for RT-qPCR gene expression analyses of Aspergillus. Of 90 primary research articles obtained through our PubMed query, 17 experimentally validated the reference gene(s) used. Twenty reference genes were used across the 90 studies, with beta-tubulin being the most used reference gene, followed by actin, 18S rRNA and glyceraldehyde 3-phosphate dehydrogenase. Sixteen of the 90 studies used multiple reference genes for normalisation. Failing to experimentally validate the stability of reference genes can lead to conflicting results, as was the case for four studies. Overall, our review highlights the need to experimentally validate reference genes in RT-qPCR studies of Aspergillus.


2016 ◽  
Vol 107 (3) ◽  
pp. 359-368 ◽  
Author(s):  
Y. Tan ◽  
X.-R. Zhou ◽  
B.-P. Pang

AbstractQuantitative real-time PCR (qRT-PCR) has been used extensively to analyze gene expression and decipher gene function. To obtain the optimal and stable normalization factors for qRT-PCR, selection and validation of reference genes should be conducted in diverse conditions. In insects, more and more studies confirmed the necessity and importance of reference gene selection. In this study, eight traditionally used reference genes in Galeruca daurica (Joannis) were assessed, using qRT-PCR, for suitability as normalization genes under different experimental conditions using four statistical programs: geNorm, Normfinder, BestKeeper and the comparative ΔCt method. The genes were ranked from the most stable to the least stable using RefFinder. The optimal suite of recommended reference genes was as follows: succinate dehydrogenase (SDHA) and tubulin-alpha (TUB-α) for temperature-treated larvae; ribosomal protein L32, SDHA and glutathione S-transferase were best for all developmental stages; ACT and TUB-α for male and female adults; SDHA and TUB-α were relatively stable and expressed in different tissues, both diapause and non-diapause adults. Reference gene evaluation was validated using expression of two target genes: the P450 CYP6 gene and the heat shock protein gene Hsp70. These results confirm the importance of custom reference gene selection when studies are conducted under diverse experimental conditions. A standardized qRT-PCR analysis procedure for gene functional studies is provided that could be useful in studies on other insect species.


2020 ◽  
Author(s):  
Qian Zhang ◽  
Xue Gao ◽  
Lian-Juan Wang ◽  
Yu-Qian Zhao ◽  
Gui-Xia Jia

Abstract Background: The selection of reliable reference genes is a critical element for obtaining accurate gene expression data to assess quantitative real-time polymerase chain reaction (qRT-PCR) performance. It is critical to use suitable reference genes in miRNA qRT-PCR because of short amplification products and large differences in the expression levels of target miRNAs involved in some biological processes. However, in lily, which exhibits a large complex genome but lacks a reference, the available miRNA reference genes for use in qRT-PCR under various treatment conditions are limited, and their reliability has rarely been systematically evaluated.Results: In this study, 8 candidate reference genes, including three classic housekeeping genes and five potential miRNAs from the miRNA library of L. × formolongi, were selected and assessed for expression stability utilizing the BestKeeper, geNorm and Normfinder tools, together with the Delta Ct method, across a diverse set of biotic and abiotic experimental conditions (developmental stages, tissues, heat stress and pathogen defence) to determine the best reference gene(s) for L. × formolongi and L. regale. The final ranking was reordered by using RankAggreg, and the results showed that the novel miRNA PC-3p-67_108977 and the conserved miRNAs miR399a, miR399a and U6 were the most stable genes for L. × formolongi and L. regale, respectively, under all tested experimental conditions. Additionally, PC-3p-67_108977 and U6 were the most suitable genes for qRT-PCR studies in lily.Conclusions: This study provides a comprehensive evaluation of the reliability of reference genes for miRNA studies on development and biotic and abiotic stress responses in different lilies. These results will be beneficial for miRNA identification and functional studies of lilies in the future.


2022 ◽  
Vol 23 (2) ◽  
pp. 738
Author(s):  
Xiu-Mei Dong ◽  
Wei Zhang ◽  
Shi-Bao Zhang

The development and tissue-dependent color formation of the horticultural plant results in various color pattern flowers. Anthocyanins and carotenoids contribute to the red and yellow colors, respectively. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) is used to analyze the expression profiles of anthocyanin and carotenoids biosynthesis genes in Cymbidium lowianum (Rchb.f.) Rchb.f. Appropriate reference gene selection and validation are required before normalization of gene expression in qRT-PCR analysis. Thus, we firstly selected 12 candidate reference genes from transcriptome data, and used geNorm and Normfinder to evaluate their expression stability in lip (divided into abaxial and adaxial), petal, and sepal of the bud and flower of C. lowianum. Our results show that the two most stable reference genes in different tissues of C. lowianum bud and flower are EF1δ and 60S, the most unstable reference gene is 26S. The expression profiles of the CHS and BCH genes were similar to FPKM value profiles after normalization to the two most stable reference genes, EF1δ and 60S, with the upregulated CHS and BCH expression in flower stage, indicating that the ABP and CBP were activated across the stages of flower development. However, when the most unstable reference gene, 26S, was used to normalize the qRT-PCR data, the expression profiles of CHS and BCH differed from FPKM value profiles, indicating the necessity of selecting stable reference genes. Moreover, CHS and BCH expression was highest in the abaxial lip and adaxial lip, respectively, indicating that the ABP and CBP were activated in abaxial and adaxial lip, respectively, resulting in a presence of red or yellow segments in abaxial and adaxial lip. This study is the first to provide reference genes in C. lowianum, and also provide useful information for studies that aim to understand the molecular mechanisms of flower color formation in C. lowianum.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 124 ◽  
Author(s):  
Zhaoping Zhang ◽  
Changjian Li ◽  
Junqing Zhang ◽  
Fang Chen ◽  
Yongfu Gong ◽  
...  

Papaver somniferum L. is an important medical plant that produces analgesic drugs used for the pain caused by cancers and surgeries. Recent studies have focused on the expression genes involved in analgesic drugs biosynthesis, and the real-time quantitative polymerase chain reaction (RT-qPCR) technique is the main strategy. However, no reference genes have been reported for gene expression normalization in P. somniferum. Herein, nine reference genes (actin (ACT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cyclophilin 2 (CYP2), elongation factor 1-alpha (EF-1α), glyceraldehyde-3-phosphate dehydrogenase 2, cytosolic (GAPC2), nuclear cap-binding protein subunit 2 (NCBP2), protein phosphatase 2A (PP2A), TIP41-like protein (TIP41), and tubulin beta chain (TUB)) of P. somniferum were selected and analyzed under five different treatments (cold, drought, salt, heavy metal, and hormone stress). Then, BestKeeper, NormFinder, geNorm, and RefFinder were employed to analyze their gene expression stability. The results reveal that NCBP2 is the most stable reference gene under various experimental conditions. The work described here is the first report regarding on reference gene selection in P. somniferum, which could be used for the accurate normalization of the gene expression involved in analgesic drug biosynthesis.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 459
Author(s):  
Zeying Zhao ◽  
Hanwen Zhou ◽  
Zhongnan Nie ◽  
Xuekui Wang ◽  
Biaobiao Luo ◽  
...  

Anemone flaccida Fr. Schmidt is a traditional medicinal herb in southwestern China and has multiple pharmacological effects on bruise injuries and rheumatoid arthritis (RA). A new drug with a good curative effect on RA has recently been developed from the extract of A. flaccida rhizomes, of which the main medicinal ingredients are triterpenoid saponins. Due to excessive exploitation, the wild population has been scarce and endangered in a few of its natural habitats and research on the cultivation of the plant commenced. Studies on the gene expressions related to the biosynthesis of triterpenoid saponins are not only helpful for understanding the effects of environmental factors on the medicinal ingredient accumulations but also necessary for monitoring the herb quality of the cultivated plants. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) as a sensitive and powerful technique has been widely used to detect gene expression across tissues in plants at different stages; however, its accuracy and reliability depend largely on the reference gene selection. In this study, the expressions of 10 candidate reference genes were evaluated in various organs of the wild and cultivated plants at different stages, using the algorithms of geNorm, NormFinder and BestKeeper, respectively. The purpose of this study was to identify the suitable reference genes for RT-qPCR detection in A. flaccida. The results showed that two reference genes were sufficient for RT-qPCR data normalization in A. flaccida. PUBQ and ETIF1a can be used as suitable reference genes in most organs at various stages because of their expression stabilitywhereas the PUBQ and EF1Α genes were desirable in the rhizomes of the plant at the vegetative stage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Madhab Kumar Sen ◽  
Kateřina Hamouzová ◽  
Pavlina Košnarová ◽  
Amit Roy ◽  
Josef Soukup

AbstractBromus sterilis is an annual weedy grass, causing high yield losses in winter cereals. Frequent use of herbicides had led to the evolution of herbicide resistance in this species. Mechanisms underlying herbicide resistance in B. sterilis must be uncovered because this problem is becoming a global threat. qRT-PCR and the next-generation sequencing technologies can elucidate the resistance mechanisms. Although qRT-PCR can calculate precise fold changes, its preciseness depends on the expression of reference genes. Regardless of stable expression in any given condition, no gene can act as a universal reference gene. Hence, it is necessary to identify the suitable reference gene for each species. To our knowledge, there are no reports on the suitable reference gene in any brome species so far. Thus, in this paper, the stability of eight genes was evaluated using qRT-PCR experiments followed by expression stability ranking via five most commonly used software for reference gene selection. Our findings suggest using a combination of 18S rRNA and ACCase to normalise the qRT-PCR data in B. sterilis. Besides, reference genes are also recommended for different experimental conditions. The present study outcomes will facilitate future molecular work in B. sterilis and other related grass species.


2016 ◽  
Vol 192 ◽  
pp. 217-224 ◽  
Author(s):  
Rong Rong ◽  
Rong-rong Li ◽  
Yan-bao Hou ◽  
Jing Li ◽  
Jia-xing Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document