scholarly journals Prevention of Nonalcoholic Hepatic Steatosis by Shenling Baizhu Powder: Involvement of Adiponectin-Induced Inhibition of Hepatic SREBP-1c

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Kairui Tang ◽  
Yuanjun Deng ◽  
Chuiyang Zheng ◽  
Huan Nie ◽  
Maoxing Pan ◽  
...  

Background. Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide, and its incidence is increasing annually, but there is currently no specific drug for treating NAFLD. Shenling Baizhu powder (SL) is a safe herbal compound commonly used in clinical practice. Our previous research has shown that SL has the effect of preventing NAFLD, but its specific mechanism has not been determined. In this study, the potential mechanism of SL on NAFLD was explored by in vivo experiments. Methods. Wistar rats fed a choline-deficient amino acid-defined diet (CDAA) were treated with SL for 8 weeks. Then, serum samples were collected to obtain biochemical indicators; adipose tissue and liver samples were collected for pathological detection; a moorFLPI-2 blood flow imager was used to measure liver microcirculation blood flow, and a rat cytokine array was used to screen potential target proteins. The expression of liver adiponectin/SREBP-1c pathway-related proteins was determined by Western blotting. Results. SL effectively reduced the liver wet weight, as well as the levels of total cholesterol (TC) and triglyceride (TG) in the liver, and ameliorated liver injury in CDAA-fed rats. Pathological examinations showed that SL markedly reduced liver lipid droplets and improved liver lipid accumulation. In addition, the detection of liver blood flow showed that SL increased liver microcirculation in CDAA-fed rats. Through the cytokine array, a differentially expressed cytokine, namely, adiponectin, was screened in the liver. Western blotting assays showed that SL increased the expression of adiponectin and phosphoacetyl-CoA Carboxylase (p-ACC) in the liver and decreased the expression of steroid regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase (FAS). Conclusion. These results suggest that SL can increase the levels of adiponectin in the liver and serum and can inhibit the expression of SREBP-1c, thereby regulating systemic lipid metabolism and reducing liver lipid accumulation.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chian-Jiun Liou ◽  
Shu-Ju Wu ◽  
Szu-Chuan Shen ◽  
Li-Chen Chen ◽  
Ya-Ling Chen ◽  
...  

Abstract Background Phloretin is isolated from apple trees and could increase lipolysis in 3T3-L1 adipocytes. Previous studies have found that phloretin could prevent obesity in mice. In this study, we investigated whether phloretin ameliorates non-alcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-induced obese mice, and evaluated the regulation of lipid metabolism in hepatocytes. Methods HepG2 cells were treated with 0.5 mM oleic acid to induce lipid accumulation, and then treated with phloretin to evaluate the molecular mechanism of lipogenesis. In another experiment, male C57BL/6 mice were fed normal diet or HFD (60% fat, w/w) for 16 weeks. After the fourth week, mice were treated with or without phloretin by intraperitoneal injection for 12 weeks. Results Phloretin significantly reduced excessive lipid accumulation and decreased sterol regulatory element-binding protein 1c, blocking the expression of fatty acid synthase in oleic acid-induced HepG2 cells. Phloretin increased Sirt1, and phosphorylation of AMP activated protein kinase to suppress acetyl-CoA carboxylase expression, reducing fatty acid synthesis in hepatocytes. Phloretin also reduced body weight and fat weight compared to untreated HFD-fed mice. Phloretin also reduced liver weight and liver lipid accumulation and improved hepatocyte steatosis in obese mice. In liver tissue from obese mice, phloretin suppressed transcription factors of lipogenesis and fatty acid synthase, and increased lipolysis and fatty acid β-oxidation. Furthermore, phloretin regulated serum leptin, adiponectin, triglyceride, low-density lipoprotein, and free fatty acid levels in obese mice. Conclusions These findings suggest that phloretin improves hepatic steatosis by regulating lipogenesis and the Sirt-1/AMPK pathway in the liver.


2019 ◽  
Vol 8 (10) ◽  
pp. 1664 ◽  
Author(s):  
Yung-Chia Chen ◽  
Hsin-Ju Chen ◽  
Bu-Miin Huang ◽  
Yu-Chi Chen ◽  
Chi-Fen Chang

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease found worldwide. The present study aimed to evaluate the mechanisms of inhibiting lipid accumulation in free fatty acid (FFA)-treated HepG2 cells caused by bark and fruit extracts of Toona sinensis (TSB and TSF). FFA induced lipid and triglyceride (TG) accumulation, which was attenuated by TSB and TSF. TSB and/or TSF promoted phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-coA carboxylase and peroxisome proliferator-activated receptor alpha upregulation. Furthermore, TSB and TSF suppressed FFA-induced liver X receptor, sterol regulatory element-binding transcription protein 1, fatty acid synthase, and stearoyl-CoA desaturase 1 protein expression. Moreover, TSB and/or TSF induced phosphorylation of Unc-51 like autophagy-activating kinase and microtubule-associated protein 1A/1B-light chain 3 expressions. Therefore, TSB and TSF relieve lipid accumulation by attenuating lipogenic protein expression, activating the AMPK pathway, and upregulating the autophagic flux to enhance lipid metabolism. Moreover, TSB and TSF reduced TG contents, implying the therapeutic use of TSB and TSF in NAFLD.


2008 ◽  
Vol 416 (2) ◽  
pp. 219-230 ◽  
Author(s):  
KyeongJin Kim ◽  
Kook Hwan Kim ◽  
Hyeong Hoe Kim ◽  
JaeHun Cheong

HBV (hepatitis B virus) is a primary cause of chronic liver disease, which frequently results in hepatitis, cirrhosis and ultimately HCC (hepatocellular carcinoma). Recently, we showed that HBx (HBV protein X) expression induces lipid accumulation in hepatic cells mediated by the induction of SREBP1 (sterol-regulatory-element-binding protein 1), a key regulator of lipogenic genes in the liver. However, the molecular mechanisms by which HBx increases SREBP1 expression and transactivation remain to be clearly elucidated. In the present study, we demonstrated that HBx interacts with LXRα (liver X receptor α) and enhances the binding of LXRα to LXRE (LXR-response element), thereby resulting in the up-regulation of SREBP1 and FAS (fatty acid synthase) in the presence or absence of the LXR agonist T0901317 in the hepatic cells and HBx-transgenic mice. Furthermore, HBx also augments the ability to recruit ASC2 (activating signal co-integrator 2), a transcriptional co-activator that controls liver lipid metabolic pathways, to the LXRE with LXRα. These studies place LXRα in a key position within the HBx-induced lipogenic pathways, and suggest a molecular mechanism through which HBV infection can stimulate the SREBP1-mediated control of hepatic lipid accumulation.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 844 ◽  
Author(s):  
Rafael Salto ◽  
Manuel Manzano ◽  
María Dolores Girón ◽  
Ainara Cano ◽  
Azucena Castro ◽  
...  

High-fat (HF) and rapid digestive (RD) carbohydrate diets during pregnancy promote excessive adipogenesis in offspring. This effect can be corrected by diets with similar glycemic loads, but low rates of carbohydrate digestion. However, the effects of these diets on metabolic programming in the livers of offspring, and the liver metabolism contributions to adipogenesis, remain to be addressed. In this study, pregnant insulin-resistant rats were fed high-fat diets with similar glycemic loads but different rates of carbohydrate digestion, High Fat-Rapid Digestive (HF–RD) diet or High Fat-Slow Digestive (HF–SD) diet. Offspring were fed a standard diet for 10 weeks, and the impact of these diets on the metabolic and signaling pathways involved in liver fat synthesis and storage of offspring were analyzed, including liver lipidomics, glycogen and carbohydrate and lipid metabolism key enzymes and signaling pathways. Livers from animals whose mothers were fed an HF–RD diet showed higher saturated triacylglycerol deposits with lower carbon numbers and double bond contents compared with the HF–SD group. Moreover, the HF–RD group exhibited enhanced glucose transporter 2, pyruvate kinase (PK), acetyl coenzyme A carboxylase (ACC) and fatty acid (FA) synthase expression, and a decrease in pyruvate carboxylase (PyC) expression leading to an altered liver lipid profile. These parameters were normalized in the HF–SD group. The changes in lipogenic enzyme expression were parallel to changes in AktPKB phosphorylation status and nuclear expression in carbohydrate-response element and sterol regulatory element binding proteins. In conclusion, an HF–RD diet during pregnancy translates to changes in liver signaling and metabolic pathways in offspring, enhancing liver lipid storage and synthesis, and therefore non-alcoholic fatty liver disease (NAFLD) risk. These changes can be corrected by feeding an HF–SD diet during pregnancy.


2019 ◽  
Vol 20 (9) ◽  
pp. 2325 ◽  
Author(s):  
Hua Li ◽  
Wonbeak Yoo ◽  
Hye-Mi Park ◽  
Soo-Youn Lim ◽  
Dong-Ha Shin ◽  
...  

Arazyme, a metalloprotease from the spider Nephila clavata, exerts hepatoprotective activity in CCL4-induced acute hepatic injury. This study investigated the hepatoprotective effects in high-fat diet (HFD)-induced non-alcoholic fatty liver disease-like C57BL/6J mice. The mice were randomly divided into four groups (n = 10/group): the normal diet group, the HFD group, the arazyme group (HFD with 0.025% arazyme), and the milk thistle (MT) group (HFD with 0.1% MT). Dietary supplementation of arazyme for 13 weeks significantly lowered plasma triglyceride (TG) and non-esterified fatty acid levels. Suppression of HFD-induced hepatic steatosis in the arazyme group was caused by the reduced hepatic TG and total cholesterol (TC) contents. Arazyme supplementation decreased hepatic lipogenesis-related gene expression, sterol regulatory element-binding transcription protein 1 (Srebf1), fatty acid synthase (Fas), acetyl-CoA carboxylase 1 (Acc1), stearoyl-CoA desaturase-1 (Scd1), Scd2, glycerol-3-phosphate acyltransferase (Gpam), diacylglycerol O-acyltransferase 1 (Dgat1), and Dgat2. Arazyme directly reduced palmitic acid (PA)-induced TG accumulation in HepG2 cells. Arazyme suppressed macrophage infiltration and tumor necrosis factor α (Tnfa), interleukin-1β (Il1b), and chemokine-ligand-2 (Ccl2) expression in the liver, and inhibited secretion of TNFα and expression of inflammatory mediators, Tnfa, Il1b, Ccl2, Ccl3, Ccl4, and Ccl5, in PA-induced RAW264.7 cells. Arazyme effectively protected hepatic steatosis and steatohepatitis by inhibiting SREBP-1-mediated lipid accumulation and macrophage-mediated inflammation.


2014 ◽  
Vol 42 (03) ◽  
pp. 651-664 ◽  
Author(s):  
Hyun Kang ◽  
Sushruta Koppula

Houttuynia cordata (H. cordata) from the family Saururaceae is a perennial herb native to Southeast Asia. It possesses a range of medicinal properties to treat several disease symptoms including allergic inflammation and anaphylaxis. In the present investigation, we provided the molecular mechanisms underlying the role of H. cordata extract (HCE) in the prevention of high glucose-induced lipid accumulation in human HepG2 hepatocytes. HepG2 cells were pre-treated with various concentrations of HCE (0, 10, 20, 40, and 80 μg/mL) and treated with serum-free medium with normal glucose (5 mM) for 1 h, followed by exposure to high glucose (25 mM D-glucose) for 24 h. HCE significantly and dose-dependently attenuated lipid accumulation in human HepG2 hepatocytes when exposed to high glucose (25 mM D-glucose) (p < 0.05, p < 0.01 and p < 0.001 at 20, 40, and 80 μg/mL concentrations, respectively). Further, HCE attenuated the expression of fatty acid synthase (FAS), sterol regulatory element-binding protein-1 and glycerol 3-phosphate acyltransferases (GPATs). The adenosine monophosphate-activated protein kinase (AMPK) was also activated by HCE treatment when exposed to high glucose (25 mM D-glucose) in human HepG2 hepatocytes. This study suggests the hypolipidemic effects of HCE by the inhibition of lipid biosynthesis mediated through AMPK signaling, which may play an active role and can be developed as an anti-obesity agent.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Taewon Yuk ◽  
Younghwa Kim ◽  
Jinwoo Yang ◽  
Jeehye Sung ◽  
Heon Sang Jeong ◽  
...  

We aimed to investigate the effects of nobiletin on hepatic lipogenesis in high glucose-induced lipid accumulation in HepG2 cells. Nobiletin, a citrus polymethoxyflavonoid with six methoxy groups, is present abundantly in the peels of citrus fruits. HepG2 cells were incubated in Dulbecco’s modified Eagle’s medium containing high glucose (25 mM) and subsequently treated with nobiletin at different concentrations (5, 25, and 50 μM). Results showed that nobiletin markedly inhibited high glucose-induced hepatic lipid accumulation in HepG2 cells. In addition, it reduced the protein expression of lipogenic factors, including sterol regulatory element-binding protein 1c (SREBP-1c) and fatty acid synthase (FAS). Nobiletin significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase. Pretreatment with compound C, an AMPK inhibitor, abolished the inhibitory effects of nobiletin on SREBP-1c and FAS expression. These results suggested that nobiletin might attenuate high glucose-induced lipid accumulation in HepG2 hepatocytes via modulation of AMPK signaling pathway. Therefore, nobiletin might be useful for the prevention and treatment of nonalcoholic fatty liver diseases.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 382 ◽  
Author(s):  
Hwa-Young Lee ◽  
Geum-Hwa Lee ◽  
Young Yoon ◽  
Han-Jung Chae

This study aimed to characterize the protective effects of R. verniciflua extract (ILF-R) and E. ulmoides extract (ILF-E), the combination called ILF-RE, against chronic CCl4-induced liver oxidative injury in rats, as well as to investigate the mechanism underlying hepatoprotection by ILF-RE against CCl4-induced hepatic dysfunction. Chronic hepatic stress was induced via intraperitoneal (IP) administration of a mixture of CCl4 (0.2 mL/100 g body weight) and olive oil [1:1(v/v)] twice a week for 4 weeks to rats. ILF-RE was administered orally at 40, 80, and 120 mg/kg to rats for 4 weeks. Alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl transpeptidase (GGT), and lipid peroxidation assays were performed, and total triglyceride, cholesterol, and LDL-cholesterol levels were quantified. Furthermore, ER stress and lipogenesis-related gene expression including sterol regulatory element-binding transcription factor 1 (SREBP-1), fatty acid synthase (FAS), and P-AMPK were assessed. ILF-RE markedly protected against liver damage by inhibiting oxidative stress and increasing antioxidant enzyme activity including glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase. Furthermore, hepatic dyslipidemia was regulated after ILF-RE administration. Moreover, hepatic lipid accumulation and its associated lipogenic genes, including those encoding SREBP-1 and FAS, were regulated after ILF-RE administration. This was accompanied by regulation of ER stress response signaling, suggesting a mechanism underlying ILF-RE-mediated hepatoprotection against lipid accumulation. The present results indicate that ILF-RE exerts hepatoprotective effects against chronic CCl4-induced dysfunction by suppressing hepatic oxidative stress and lipogenesis, suggesting that ILF-RE is a potential preventive/therapeutic natural product in treating hepatoxicity and associated dysfunction.


2005 ◽  
Vol 288 (6) ◽  
pp. E1195-E1205 ◽  
Author(s):  
Susan E. Schadinger ◽  
Nancy L. R. Bucher ◽  
Barbara M. Schreiber ◽  
Stephen R. Farmer

Peroxisome proliferator-activated receptor-γ (PPARγ) is considered to be one of the master regulators of adipocyte differentiation. PPARγ2 is abundantly expressed in mature adipocytes and is elevated in the livers of animals that develop fatty livers. The aim of this study was to determine the ability of PPARγ2 to induce lipid accumulation in hepatocytes and to delineate molecular mechanisms driving this process. The hepatic cell line AML-12 was used to generate a cell line stably expressing PPARγ2. Oil Red O staining revealed that PPARγ2 induces lipid accumulation in hepatocytes. This phenotype is accompanied by a selective upregulation of several adipogenic and lipogenic genes including adipose differentiation-related protein (ADRP), adipocyte fatty acid-binding protein 4, sterol regulatory element-binding protein-1 (SREBP-1), fatty acid synthase (FAS), and acetyl-CoA carboxylase, genes whose expression levels are known to increase in steatotic livers of ob/ob mice. Furthermore, the PPARγ2-regulated induction of both SREBP-1 and FAS parallels an increase in de novo triacylglycerol synthesis in hepatocytes. Triacylglycerol synthesis and lipid accumulation are further enhanced by culturing hepatocytes with troglitazone in the absence of exogenous lipids. These results correspond with an increase in the lipid droplet protein, ADRP, and the data demonstrate that ADRP functions to coat lipid droplets in hepatocytes as observed by confocal microscopy. Taken together, these observations propose a role for PPARγ2 as an inducer of steatosis in hepatocytes and suggest that this phenomenon occurs through an induction of pathways regulating de novo lipid synthesis.


Sign in / Sign up

Export Citation Format

Share Document