scholarly journals Abnormality in the Morphogenesis of Tooth Development and Relationship with Orthodontic Deformities and Treatment Approaches

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Greta Roussanova Yordanova-Kostova ◽  
Mario Vaskov Grancharov ◽  
Gergana Diyanova Gurgurova

In the process of odontogenesis, a disturbance in the formation of the epithelium and mesenchyme can be observed and this can be manifested by atypical forms of dental development. Such biological phenomena with altered morphology are as follows: dens invaginatus (DI), dens evaginatus (DE), talon cusps, and double teeth (DT) or connate teeth (fusion and gemination). Patients with orthodontic anomalies who also exhibit teeth with morphogenetic disorders are presented in this article. Dens evaginatus and talon cusps pose orthodontic challenges in the treatment finishing phase. These reduce the possibility of achieving maximum intercuspidation between the lower and upper front teeth as well as poor incisor guidance. Other orthodontic challenges are as follows: the risk of occlusal trauma and periodontal loading of the antagonists and the possibility of accessory cusps to play the role of the inclined plane and lead to deviations in the closure of the lower jaw. The fused teeth can cause aesthetic and occlusal disturbances in the anterior segment. Furthermore, double teeth can lead to ectopic eruption or noneruption of adjacent teeth due to their increased crown size as is the case with one of the presented patients. This is because a double tooth occupies more space in the dental arch. If not diagnosed early, impaction of the adjacent tooth, violation of the occlusal ratios (Bolton/anterior), and exacerbation of the orthodontic deformity can be observed. The modern CBCT imaging is the best diagnostic method for identifying problems related to tooth positions or tooth germs.

Development ◽  
1996 ◽  
Vol 122 (10) ◽  
pp. 3035-3044 ◽  
Author(s):  
Y. Chen ◽  
M. Bei ◽  
I. Woo ◽  
I. Satokata ◽  
R. Maas

Members of the Msx homeobox family are thought to play important roles in inductive tissue interactions during vertebrate organogenesis, but their precise developmental function has been unclear. Mice deficient for Msx1 exhibit defects in craniofacial development and a failure of tooth morphogenesis, with an arrest in molar tooth development at the E13.5 bud stage. Because of its potential for experimental manipulation, the murine molar tooth germ provides a powerful system for studying the role of Msx genes in inductive signaling during organogenesis. To further analyze the role of Msx1 in regulating epithelial-mesenchymal interactions during tooth morphogenesis, we have examined the expression of several potential Msx1 downstream genes in Msx1 mutant tooth germs and we have performed functional experiments designed to order these genes into a pathway. Our results show that expression of Bone Morphogenetic Protein 4 (BMP4), the HMG box gene Lef1 and the heparan sulfate proteoglycan syndecan-1 is specifically reduced in Msx1 mutant dental mesenchyme, while expression of the extracellular matrix protein tenascin is unaffected. BMP4 soaked beads can induce Bmp4 and Lef1 expression in explanted wild-type dental mesenchymes, but only Lef1 expression in Msx1 mutant dental mesenchyme. We thus conclude that epithelial BMP4 induces its own expression in dental mesenchyme in a manner that requires Msx1. In turn, we show that addition of BMP4 to Msx1 deficient tooth germs bypasses the requirement for Msx1 and rescues epithelial development from the bud stage to the E14.5 cap stage. Lastly, we show that FGFs induce syndecan-1 expression in dental mesenchyme in a manner that also requires Msx-1. These results integrate Msx1 into a regulatory hierarchy in early tooth morphogenesis and demonstrate that Msx1 is not only expressed in dental mesenchyme in response to epithelial signals, but also in turn regulates the reciprocal expression of inductive signals in the mesenchyme which then act back upon the dental epithelium. We propose that Msx genes function repetitively during vertebrate organogenesis to permit inductive signaling to occur back and forth between tissue layers.


Development ◽  
2001 ◽  
Vol 128 (22) ◽  
pp. 4605-4613 ◽  
Author(s):  
Christine A. Ferguson ◽  
Abigail S. Tucker ◽  
Kristiina Heikinheimo ◽  
Masatoshi Nomura ◽  
Paul Oh ◽  
...  

The gene for activin βA is expressed in the early odontogenic mesenchyme of all murine teeth but mutant mice show a patterning defect where incisors and mandibular molars fail to develop but maxillary molars develop normally. In order to understand why maxillary molar tooth development can proceed in the absence of activin, we have explored the role of mediators of activin signalling in tooth development. Analysis of tooth development in activin receptor II and Smad2 mutants shows that a similar tooth phenotype to activin βA mutants can be observed. In addition, we identify a novel downstream target of activin signalling, the Iroquois-related homeobox gene, Irx1, and show that its expression in activin βA mutant embryos is lost in all tooth germs, including the maxillary molars. These results strongly suggest that other transforming growth factor β molecules are not stimulating the activin signalling pathway in the absence of activin. This was confirmed by a non-genetic approach using exogenous soluble receptors to inhibit all activin signalling in tooth development, which reproduced the genetic phenotypes. Activin, thus, has an essential role in early development of incisor and mandibular molar teeth but this pathway is not required for development of maxillary molars.


2011 ◽  
Vol 4 (2) ◽  
pp. 120-127 ◽  
Author(s):  
Nikolai N. Iordansky

The cranial kinesis and movements of the lower jaw in Typhlops are analyzed, with special emphasis placed on the functions of the jugomandibular ligament. The musculature of the Typhlops jaw apparatus is described. The role of movements of the quadrato-mandibular and palato-maxillary systems in feeding mechanics and functioning of the jaw apparatus muscles is discussed.


2019 ◽  
Vol 14 (7) ◽  
pp. 598-606
Author(s):  
Sarah Albogami

Background:: Regeneration is the process by which body parts lost as a result of injury are replaced, as observed in certain animal species. The root of regenerative differences between organisms is still not very well understood; if regeneration merely recycles developmental pathways in the adult form, why can some animals regrow organs whereas others cannot? In the regulation of the regeneration process as well as other biological phenomena, epigenetics plays an essential role. Objective:: This review aims to demonstrate the role of epigenetic regulators in determining regenerative capacity. Results:: In this review, we discuss the basis of regenerative differences between organisms. In addition, we present the current knowledge on the role of epigenetic regulation in regeneration, including DNA methylation, histone modification, lysine methylation, lysine methyltransferases, and the SET1 family. Conclusion:: An improved understanding of the regeneration process and the epigenetic regulation thereof through the study of regeneration in highly regenerative species will help in the field of regenerative medicine in future.


2021 ◽  
Vol 7 (7) ◽  
pp. eabf1798
Author(s):  
A. Murashima-Suginami ◽  
H. Kiso ◽  
Y. Tokita ◽  
E. Mihara ◽  
Y. Nambu ◽  
...  

Uterine sensitization–associated gene-1 (USAG-1) deficiency leads to enhanced bone morphogenetic protein (BMP) signaling, leading to supernumerary teeth formation. Furthermore, antibodies interfering with binding of USAG-1 to BMP, but not lipoprotein receptor–related protein 5/6 (LRP5/6), accelerate tooth development. Since USAG-1 inhibits Wnt and BMP signals, the essential factors for tooth development, via direct binding to BMP and Wnt coreceptor LRP5/6, we hypothesized that USAG-1 plays key regulatory roles in suppressing tooth development. However, the involvement of USAG-1 in various types of congenital tooth agenesis remains unknown. Here, we show that blocking USAG-1 function through USAG-1 knockout or anti–USAG-1 antibody administration relieves congenital tooth agenesis caused by various genetic abnormalities in mice. Our results demonstrate that USAG-1 controls the number of teeth by inhibiting development of potential tooth germs in wild-type or mutant mice missing teeth. Anti–USAG-1 antibody administration is, therefore, a promising approach for tooth regeneration therapy.


2004 ◽  
Vol 83 (3) ◽  
pp. 241-244 ◽  
Author(s):  
A. Ohazama ◽  
J.-M. Courtney ◽  
P.T. Sharpe

Osteoprotegerin (OPG), receptor activator of nuclear factor-κB (RANK), and RANK ligand (RANKL) are mediators of various cellular interactions, including bone metabolism. We analyzed expression of these three genes during murine odontogenesis from epithelial thickening to cytodifferentiation stages. Opg showed expression in the thickening and bud epithelium. Expression of Opg and Rank was observed in both the internal and the external enamel epithelium as well as in the dental papilla mesenchyme. Although Rankl expression was not detected in tooth epithelium or mesenchyme, it was expressed in pre-osteogenic mesenchymal cells close to developing tooth germs. All three genes were detected in developing dentary bone at P0. The addition of exogenous OPG to explant cultures of tooth primordia produced a delay in tooth development that resulted in reduced mineralization. We propose that the spatiotemporal expression of these molecules in early tooth and bone primordia cells has a role in co-ordinating bone and tooth development.


2017 ◽  
Vol 5 (6) ◽  
pp. 730-741 ◽  
Author(s):  
Qiuping Yuan ◽  
Min Zhao ◽  
Bhavna Tandon ◽  
Lorena Maili ◽  
Xiaoming Liu ◽  
...  
Keyword(s):  

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Georgia Siasou ◽  
Gerasimos Siasos ◽  
Marilita M Moschos ◽  
Nikolaos Gouliopoulos ◽  
Evangelos Oikonomou ◽  
...  

Introduction: Primary open-angle glaucoma (POAG) is one of the most prevalent causes of irreversible blindness and is associated with endothelial dysfunction and arterial stiffness. Pseudoexfoliative glaucoma (PEG) is another type of glaucoma observed in pseudoexfoliation syndrome. It is characterized by the deposition of pseudoexfoliative material not only to the anterior segment of the eye, but also to the vessels, heart and other organs. Hypothesis: Endothelial function and arterial stiffness are impaired in patients with POAG and PEG supporting the significant role of vascular function impairment in the progression of the disease. Methods: Forty four POAG patients, 22 PEG and 38 healthy subjects (Cl) were included in this study. All subjects were free of cardiovascular or inflammatory diseases. Endothelial function was evaluated by flow-mediated dilatation (FMD). Carotid-femoral pulse wave velocity (PWV) was measured as an index of aortic stiffness and augmentation index (AIx) as a measure of arterial wave reflections Results: Between the three study groups CL, POAG, PEG there was no difference in age (67±10years vs. 70±9years vs. 66±12yeras, p=0.12) or prevalence of male sex (70% vs. 57% vs. 50%, p=0.21). Importantly, there was a linear impairment of FMD (7.35±2.77% vs. 6.58±3.18% vs. 4.88±3.29%, p=0.006), PWV (7.98±1.56m/sec vs. 9.20±1.84m/sec vs. 9.22±2.16m/sec, p=0.004) and AIx (21.29±8.77% vs. 25.14±5.71% vs. 28.20±8.75%, p=0.002) from CL to POAG and PEG. Interestingly post hoc test after Scheffe correction revealed also that PEG subjects had not only significantly impaired FMD, compared to control subjects, but also compared to POAG subjects (4.88±3.29% vs. 6.58±3.18%, p=0.02). Conclusions: Endothelial function and arterial stiffness are significantly impaired in patients with pseudoexfoliative glaucoma. These findings shed some light in the pathophysiology of pseudoexfoliative glaucoma and support the theory that pseudoexfoliative fibrils may also accumulate and damage the arterial wall.


Development ◽  
2000 ◽  
Vol 127 (2) ◽  
pp. 217-224 ◽  
Author(s):  
B.L. Thomas ◽  
J.K. Liu ◽  
J.L. Rubenstein ◽  
P.T. Sharpe

Dlx2, a member of the distal-less gene family, is expressed in the first branchial arch, prior to the initiation of tooth development, in distinct, non-overlapping domains in the mesenchyme and the epithelium. In the mesenchyme Dlx2 is expressed proximally, whereas in oral epithelium it is expressed distally. Dlx2 has been shown to be involved in the patterning of the murine dentition, since loss of function of Dlx1 and Dlx2 results in early failure of development of upper molar teeth. We have investigated the regulation of Dlx2 expression to determine how the early epithelial and mesenchymal expression boundaries are maintained, to help to understand the role of these distinct expression domains in patterning of the dentition. Transgenic mice produced with a lacZ reporter construct, containing 3.8 kb upstream sequence of Dlx2, led to the mapping of regulatory regions driving epithelial but not mesenchymal expression in the first branchial arch. We show that the epithelial expression of Dlx2 is regulated by planar signalling by BMP4, which is coexpressed in distal oral epithelium. Mesenchymal expression is regulated by a different mechanism involving FGF8, which is expressed in the overlying epithelium. FGF8 also inhibits expression of Dlx2 in the epithelium by a signalling pathway that requires the mesenchyme. Thus, the signalling molecules BMP4 and FGF8 provide the mechanism for maintaining the strict epithelial and mesenchymal expression domains of Dlx2 in the first arch.


2018 ◽  
Vol 9 (4) ◽  
pp. 28-32
Author(s):  
E. Y. Efmova

Objective: to reveal the morphometric regularities of the depth indices of the dental arches of the upper and lower jaws of the mesocrane skull type.Material and methods: the morphometric parameters of the depth of the dental arches of the upper and lower jaws were investigated. Te work was performed on 144 preparations of mesocrane skull type of people of both sexes of mature age with physiological occlusion of teeth. Te depth of the dental arch was measured from the point located at the center of the cutting edge of the medial incisor to the point of intersection with the line connecting the distal surfaces of the tooth crowns at the level of the canines, frst premolars, second premolars, frst molars, and second molars.Results: the range of confdence limits of the depth of the dental arches of the upper jaw in men at the level of canines and premolars surpassed those of women. Te range of confdence limits of the depth of the dental arches of the lower jaw in men and women at all levels of measurement was similar.Conclusions: the indices of the confdence limits of the depth of the vestibular and palatal dental arches of the upper and lower jaws are revealed. Te new data obtained as a result of the research, supplement and expand the information on the studied parameters, both in theoretical and clinical aspects.


Sign in / Sign up

Export Citation Format

Share Document