scholarly journals Design Optimization of an Integrated E-Type Multilink Suspension Wheel-Side Drive System and Improvement of Vehicle Ride Comfort

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Wen Lu ◽  
Wenbo Li ◽  
Xinbo Chen

Distributed-drive electric vehicles constitute an important research direction for the future development of electric vehicles. In this regard, the integrated suspension wheel-side drive system has considerable development potential because it can address the lack of driving smoothness and the grounding deterioration caused by the excessive unsprung mass of the distributed-drive system. However, a complete and systematic description of the design of such a system is not available in the literature. Therefore, this paper proposes a design process for an integrated E-type multilink suspension wheel-side drive system and a method to improve the vehicle ride comfort. Based on a configuration analysis of the E-type multilink suspension using the orientation feature set method, the ADAMS platform was used to optimize the hard point coordinates of the suspension with the integrated E-type multilink suspension wheel-side drive system as the object, and the spring stiffness and damper were designed considering the driving smoothness and the grounding of the vehicle. The bushing stiffnesses were determined through tests, and the feasibility of each bushing installation was determined via elastic kinematic simulation of the integrated E-type multilink wheel-side drive system; then, optimization design of bushing stiffness was carried out for ride smoothness. Then, a lightweight design of the gears’ reducer was performed. Finally, the specific structural design and strength verification of the key components of the designed system were conducted. The results indicated that the strength of each component of the wheel-side drive system met the requirements. Thus, the overall design process of the integrated suspension wheel-side drive system was improved. This study can therefore serve as a reference for the integrated design and vehicle ride comfort improvement of wheel-side drive systems and suspensions.

2014 ◽  
Vol 577 ◽  
pp. 162-165
Author(s):  
Li Zhen Li ◽  
Zhi Feng Song

In this paper, the Xiali car Mcpherson type front suspension lower arm as the main research object, research the Xiali car converted to electric vehicles, the lower arm, internal stress distribution of structure on the lower arm, and on the basis of optimization design is carried out with ANSYS software. The last judgment andevaluation of prototype vehicle and electric vehicle arm stress, strain distribution and variation of structure on the lower arm, the topology optimization analysis is carried out, the lower arm to meet the strength and stiffness of the structure at the same time, meet the requirements of lightweight design.


2021 ◽  
pp. 129-138
Author(s):  
Fuyuan Liu ◽  
Min Chen ◽  
Lizhe Wang ◽  
Xiang Wang ◽  
Cheng-Hung Lo

AbstractThis paper presents an integrated design method for the customization and lightweight design of free-shaped wearable devices, illustrated by a lower limb exoskeleton. The customized design space is derived from the 3D scanning models. Based on the finite element analysis, the structural framework is determined through topology optimization with allowable strength. By means of generative design, the lattice library is constructed to fill the frames under different conformal algorithms. Finally, the proposed method is illustrated by the exoskeleton design case.


2013 ◽  
Vol 288 ◽  
pp. 125-129
Author(s):  
Xiao Hua Wu ◽  
Wei Li

The multi-dynamic coupling drive system can coordinate the operating characteristics of all power sources, optimize the total efficiency and driving characteristic of the drive system, and hence improve the performance of electric vehicles. Therefore, it has greater energy saving potential and better prospects. Under the premise of meeting the needs of electric vehicle performance, how to synthesis and decompose the output power of the different power sources reasonablely and efficiently is the core problem. There are a number of driving modes existing in the the multi-dynamic coupling drive electric vehicles. The coordination control of the torque of related power sources during the transition among different modes is essential to vehicle’s power and ride comfort performance. It is meaningful to improve the system efficiency and drivability performance by control strategy, while ensuring the capability of energy saving and emission reduction.


2021 ◽  
Vol 37 ◽  
pp. 270-281
Author(s):  
Fangfang Yin ◽  
Kaifang Dang ◽  
Weimin Yang ◽  
Yumei Ding ◽  
Pengcheng Xie

Abstract In order to solve the application restrictions of deterministic-based topology optimization methods arising from the omission of uncertainty factors in practice, and to realize the calculation cost control of reliability-based topology optimization. In consideration of the current reliability-based topology optimization methods of continuum structures mainly based on performance indexes model with a power filter function. An efficient probabilistic reliability-based topology optimization model that regards mass and displacement as an objective function and constraint is established based on the first-order reliability method and a modified economic indexes model with a composite exponential filter function in this study. The topology optimization results obtained by different models are discussed in relation to optimal structure and convergence efficiency. Through numerical examples, it can be seen that the optimal layouts obtained by reliability-based models have an increased amount of material and more support structures, which reveals the necessity of considering uncertainty in lightweight design. In addition, the reliability-based modified model not only can obtain lighter optimal structures compared with traditional economic indexes models in most circumstances, but also has a significant advantage in convergence efficiency, with an average increase of 44.59% and 64.76% compared with the other two reliability-based models. Furthermore, the impact of the reliability index on the results is explored, which verifies the validity of the established model. This study provides a theoretical reference for lightweight or innovative feature-integrated design in engineering applications.


Author(s):  
Bin Wang ◽  
Xinbo Chen ◽  
Hongming Lyu ◽  
Xinwei Niu
Keyword(s):  

Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 107
Author(s):  
Rongchao Jiang ◽  
Zhenchao Jin ◽  
Dawei Liu ◽  
Dengfeng Wang

In order to reduce the negative effect of lightweighting of suspension components on vehicle dynamic performance, the control arm and torsion beam widely used in front and rear suspensions were taken as research objects for studying the lightweight design method of suspension components. Mesh morphing technology was employed to define design variables. Meanwhile, the rigid–flexible coupling vehicle model with flexible control arm and torsion beam was built for vehicle dynamic simulations. The total weight of control arm and torsion beam was taken as optimization objective, as well as ride comfort and handling stability performance indexes. In addition, the fatigue life, stiffness, and modal frequency of control arm and torsion beam were taken as the constraints. Then, Kriging model and NSGA-II were adopted to perform the multi-objective optimization of control arm and torsion beam for determining the lightweight scheme. By comparing the optimized and original design, it indicates that the weight of the optimized control arm and torsion beam are reduced 0.505 kg and 1.189 kg, respectively, while structural performance and vehicle performance satisfy the design requirement. The proposed multi-objective optimization method achieves a remarkable mass reduction, and proves to be feasible and effective for lightweight design of suspension components.


2013 ◽  
Vol 389 ◽  
pp. 953-956
Author(s):  
Xian Zhang Feng ◽  
Yan Mei Cui ◽  
Li Hong Yu ◽  
Zhi Qiang Jiang ◽  
Jun Wei Cheng ◽  
...  

In order to the integrated design of the geometric parameters and drawing the pulley parts, based on R & D platform of the VBA with the CAD software, hence after analyzing the selection belt type, determine the reference diameter of the belt pulley, choosing length and the amount of the belt, and designing and drawing the pulley parts, in which include the drawing the tooth of v belt pulley, chamfers and grooves, keyway, hatches, and part dimension, etc. Conventional belt drive system is successfully developed. The design results show that the program is running smoothly, the result is correct with the friendly interface, it can provide a convenient tool to rapidly design of project for the belt drive system.


Sign in / Sign up

Export Citation Format

Share Document