scholarly journals Development of Wireless Sensor Device for Machine English Oral Pronunciation Noise Detection

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yaning Zhu

There is often noise in spoken machine English, which affects the accuracy of pronunciation. Therefore, how to accurately detect the noise in machine English spoken language and give standard spoken pronunciation is very important and meaningful. The traditional machine-oriented spoken English speech noise detection technology is limited to the improvement of software algorithm, mainly including speech enhancement technology and speech endpoint detection technology. Based on this, this paper will develop a wireless sensor network based on machine English oral pronunciation noise based on air and nonair conduction, reasonably design and configure air sensors, and nonair conduction sensors to deal with machine English oral pronunciation noise, so as to improve the naturalness and intelligibility of machine English speech. At the hardware level, this paper mainly optimizes the AD sampling, sensor matching layout, and internal hardware circuit board layout of the two types of sensors, so as to solve the compatibility problem between them and further reduce the hardware power consumption. In order to further verify or evaluate the performance of the machine spoken English speech noise detection sensor designed in this paper, a machine spoken English training system based on Android platform is designed. Compared with the traditional system, the training system can improve the intelligence of machine oriented oral English noise detection algorithm, so as to continuously improve the accuracy of system detection. The machine English pronunciation is adjusted and corrected by combining the data sensed by the sensor, so as to form a closed-loop design. The experimental results show that the wireless sensor sample proposed in this paper has obvious advantages in detecting the accuracy of machine English oral pronunciation, and its good closed-loop system is helpful to further improve the accuracy of machine English oral pronunciation.

Author(s):  
Chao Wang

Background: It is important to improve the quality of service by using congestion detection technology to find the potential congestion as early as possible in wireless sensor network. Methods: So an improved congestion control scheme based on traffic assignment and reassignment algorithm is proposed for congestion avoidance, detection and mitigation. The congestion area of the network is detected by predicting and setting threshold. When the congestion occurs, sensor nodes can be recovery quickly from congestion by adopting reasonable method of traffic reassignment. And the method can ensure the data in the congestion areas can be transferred to noncongestion areas as soon as possible. Results: The simulation results indicate that the proposed scheme can reduce the number of loss packets, improve the throughput, stabilize the average transmission rate of source node and reduce the end-to-end delay. Conclusion: : So the proposed scheme can enhance the overall performance of the network. Keywords: wireless sensor network; congestion control; congestion detection; congestion mitigation; traffic assignment; traffic reassignment.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1179
Author(s):  
Carolina Del-Valle-Soto ◽  
Carlos Mex-Perera ◽  
Juan Arturo Nolazco-Flores ◽  
Alma Rodríguez ◽  
Julio C. Rosas-Caro ◽  
...  

Wireless Sensor Networks constitute an important part of the Internet of Things, and in a similar way to other wireless technologies, seek competitiveness concerning savings in energy consumption and information availability. These devices (sensors) are typically battery operated and distributed throughout a scenario of particular interest. However, they are prone to interference attacks which we know as jamming. The detection of anomalous behavior in the network is a subject of study where the routing protocol and the nodes increase power consumption, which is detrimental to the network’s performance. In this work, a simple jamming detection algorithm is proposed based on an exhaustive study of performance metrics related to the routing protocol and a significant impact on node energy. With this approach, the proposed algorithm detects areas of affected nodes with minimal energy expenditure. Detection is evaluated for four known cluster-based protocols: PEGASIS, TEEN, LEACH, and HPAR. The experiments analyze the protocols’ performance through the metrics chosen for a jamming detection algorithm. Finally, we conducted real experimentation with the best performing wireless protocols currently used, such as Zigbee and LoRa.


2015 ◽  
Vol 752-753 ◽  
pp. 1406-1412
Author(s):  
Lei Zeng ◽  
Jian Chen ◽  
Han Ning Li ◽  
Bin Yan ◽  
Yi Fu Xu ◽  
...  

In modern industry, the nondestructive testing of printed circuit board (PCB) can prevent effectively the system failure and is becoming more and more important. As a vital part of the PCB, the via connects the devices, the components and the wires and plays a very important role for the connection of the circuits. With the development of testing technology, the nondestructive testing of the via extends from two dimension to three dimension in recent years. This paper proposes a three dimensional detection algorithm using morphology method to test the via. The proposed algorithm takes full advantage of the three dimensional structure and shape information of the via. We have used the proposed method to detect via from PCB images with different size and quality, and found the detection performances to be very encouraging.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ming Xia ◽  
Peiliang Sun ◽  
Xiaoyan Wang ◽  
Yan Jin ◽  
Qingzhang Chen

Localization is a fundamental research issue in wireless sensor networks (WSNs). In most existing localization schemes, several beacons are used to determine the locations of sensor nodes. These localization mechanisms are frequently based on an assumption that the locations of beacons are known. Nevertheless, for many WSN systems deployed in unstable environments, beacons may be moved unexpectedly; that is, beacons are drifting, and their location information will no longer be reliable. As a result, the accuracy of localization will be greatly affected. In this paper, we propose a distributed beacon drifting detection algorithm to locate those accidentally moved beacons. In the proposed algorithm, we designed both beacon self-scoring and beacon-to-beacon negotiation mechanisms to improve detection accuracy while keeping the algorithm lightweight. Experimental results show that the algorithm achieves its designed goals.


Sign in / Sign up

Export Citation Format

Share Document