scholarly journals A Novel NIR Fluorescent Nanoprobe Targeting HER2-Positive Breast Cancer: Tra-TTR-A

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Meijuan Chen ◽  
Zhousheng Lin ◽  
Guangyu Yao ◽  
Xi Hong ◽  
Xiaolei Xue ◽  
...  

TTRE, a photosensitizer molecule, has excellent biofluorescence imaging performance and effective antitumor properties for breast cancer. However, its application in breast cancer treatment is limited due to poor tumor selectivity and lack of targeting ability. In this study, TTRE and trastuzumab were combined to synthesize Tra-TTR-A, a novel near-infrared fluorescent nanoprobe for HER2 positive breast cancer. The targeting and antitumor abilities of Tra-TTR-A in breast cancer were also investigated. Like TTRE, Tra-TTR-A has a stable structure with remarkable optical properties and in vivo imaging capacity. However, Tra-TTR-A not only inhibits tumor growth by generating reactive oxygen species but also kills tumor cells by trastuzumab. In this study, Tra-TTR-A, a new type of near-infrared fluorescent nanoprobe that targets HER2-positive breast cancer, was successfully synthesized. Tra-TTR-A could be used in in vivo imaging, targeted photodynamic therapy, and diagnosis and treatment for breast cancer.

2021 ◽  
Vol 11 ◽  
Author(s):  
Yan Yan ◽  
Xiao Cheng ◽  
Lin Li ◽  
Rumeng Zhang ◽  
Yong Zhu ◽  
...  

Breast cancer is the most common malignant cancer in women worldwide, especially in developing countries. Herceptin is a monoclonal antibody with an antitumor effect in HER2-positive breast cancer. However, the large molecular weight of Herceptin limited its employment. In this study, we constructed and screened HER2-nanobody and verified its tumor-suppressive effect in HER2-positive breast cancer cells. HER2-nanobody was established, filtrated, purified, and was demonstrated to inhibit cell total number, viability, colony formation and mitosis, and promote cell apoptosis in HER2-positive breast cancer cells in vitro. Treated with HER2-nanobody, tumor growth was significantly inhibited by both intratumor injection and tail intravenous injection in vivo. The phosphorylation of ERK and AKT was restrained by HER2-nanobody in HER2-positive breast cancer cells. RAS-RAF-MAPK and PI3K-AKT-mTOR are two important pathways involved in HER2. It was credible for HER2-nanobody to play the tumor suppressive role by inhibiting the phosphorylation of ERK and AKT. Therefore, HER2-nanobody could be employed as a small molecular antibody to suppress HER2-positive breast cancer.


2021 ◽  
pp. 156-159
Author(s):  
M. A. Frolova ◽  
M. B. Stenina

In recent years, there has been a wide range of treatment options for patients with metastatic HER2-positive breast cancer, resulting in  the  highest life expectancy for  these patients among all subtypes. The  addition of  pertuzumab to trastuzumab and docetaxel has been shown to increase overall survival and is therefore recognized as the standard first-line treatment. The most optimal second-line treatment option is trastuzumab emtansine. In  addition, various combinations of  cytostatics and anti HER2 targeting agents can be used. The choice of treatment options in heavily pretreated patients is of great interest. If they have not previously received pertuzumab, is it worth to use it and which combination is the best? One possible option is the combination of eribulin with the dual anti-HER2 blockade with trastuzumab and pertuzumab. Eribulin is an anti-microtubule agent that irreversibly blocks mitosis. In addition, it has non-mitotic effects – in vivo and in vitro experiments demonstrated its ability to restore normal tumor vascularization, reduce the area of hypoxia and, as a consequence, decrease tumor cells migration and invasion. This article represents a clinical case of the use of eribulin with double anti-HER2 blockade in the 6th line of treatment in a patient with metastatic HER2-positive breast cancer. Long-term control of the disease (within 2 years) with a satisfactory quality of life has been demonstrated. 


2019 ◽  
Vol 116 (9) ◽  
pp. 3863-3872 ◽  
Author(s):  
Sandra Blasco-Benito ◽  
Estefanía Moreno ◽  
Marta Seijo-Vila ◽  
Isabel Tundidor ◽  
Clara Andradas ◽  
...  

Although human epidermal growth factor receptor 2 (HER2)-targeted therapies have dramatically improved the clinical outcome of HER2-positive breast cancer patients, innate and acquired resistance remains an important clinical challenge. New therapeutic approaches and diagnostic tools for identification, stratification, and treatment of patients at higher risk of resistance and recurrence are therefore warranted. Here, we unveil a mechanism controlling the oncogenic activity of HER2: heteromerization with the cannabinoid receptor CB2R. We show that HER2 physically interacts with CB2R in breast cancer cells, and that the expression of these heteromers correlates with poor patient prognosis. The cannabinoid Δ9-tetrahydrocannabinol (THC) disrupts HER2–CB2R complexes by selectively binding to CB2R, which leads to (i) the inactivation of HER2 through disruption of HER2–HER2 homodimers, and (ii) the subsequent degradation of HER2 by the proteasome via the E3 ligase c-CBL. This in turn triggers antitumor responses in vitro and in vivo. Selective targeting of CB2R transmembrane region 5 mimicked THC effects. Together, these findings define HER2–CB2R heteromers as new potential targets for antitumor therapies and biomarkers with prognostic value in HER2-positive breast cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Zhang ◽  
Yan-Tao Yin ◽  
Chi-Hua Wu ◽  
Rong-Lin Qiu ◽  
Wen-Jun Jiang ◽  
...  

Breast cancer (BC) is a type of malignant tumor originating from the epithelial tissue of the mammary gland, and about 20% of breast cancers are human epidermal growth factor receptor 2 positive (HER2+), which is a subtype with more aggression. Recently, HER2-positive breast cancer is often accompanied by poor prognosis of patients, and targeted therapy showed a promising prospect. To combat this disease, novel therapeutic targets are still needed. Adenylate kinase 4 (AK4) is a member of the adenylate kinase family and is expressed in the mitochondrial matrix. AK4 is involved in multiple cellular functions such as energy metabolism homeostasis. Interestingly, AK4 was observed highly expressed in several tumor tissues, and the involvement of AK4 in cancer development was generally revealed. However, the possible role of AK4 on the growth and development of breast cancer is still unclear. Here, we investigated the possible functions of AK4 on the progression of HER2-positive breast cancer. We found the high expression of AK4 in HER2-positive breast cancer tissues from patients who received surgical treatment. Additionally, AK4 expression levels were obviously correlated with clinical-pathological features, including pTNM stage (P=0.017) and lymph node metastasis (P=0.046). We mechanically confirmed that AK4 depletion showed the obvious impairment of cell proliferation and invasion in MCF7 and MDA-MB-231 cells. AK4 also facilitates tumor growth and metastasis of HER2-positive breast cancer in vivo. In conclusion, we identified and mechanically confirmed that AK4 is a novel therapeutic target of HER2-positive breast cancer.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yanlin Ren ◽  
Dongyin Chen ◽  
Zurong Zhai ◽  
Junjie Chen ◽  
Aiping Li ◽  
...  

AbstractThe overexpression of HER2 is associated with a malignant proliferation of breast cancer. In this study, we developed a non-cytotoxic JWA gene activating compound 1 (JAC1) to inhibit the proliferation of HER2-positive breast cancer cells in vitro and in vivo experimental models. JAC1 increased the ubiquitination of HER2 at the K716 site through the E3 ubiquitin ligase SMURF1 which was due to the decreased expression of NEDD4, the E3 ubiquitin ligase of SMURF1. In conclusion, JAC1 suppresses the proliferation of HER2-positive breast cancer cells through the JWA triggered HER2 ubiquitination signaling. JAC1 may serve as a potential therapeutic agent for HER2-positive breast cancer.


2011 ◽  
Author(s):  
Jonathan E. Zuckerman ◽  
Han Han ◽  
Leonard Medrano ◽  
Chung Hang J. Choi ◽  
Mark E. Davis

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Jung Min Park ◽  
Yoon-Jae Kim ◽  
Soeun Park ◽  
Minsu Park ◽  
Lee Farrand ◽  
...  

AbstractTrastuzumab resistance in HER2-positive breast cancer is associated with a poorer prognosis. HSP90 is thought to play a major role in such resistance, but N-terminal inhibitors of this target have had little success. We sought to investigate the utility of NCT-547, a novel, rationally-designed C-terminal HSP90 inhibitor in the context of overcoming trastuzumab resistance. NCT-547 treatment significantly induced apoptosis without triggering the heat shock response (HSR), accompanied by caspase-3/− 7 activation in both trastuzumab-sensitive and -resistant cells. NCT-547 effectively promoted the degradation of full-length HER2 and truncated p95HER2, while also attenuating hetero-dimerization of HER2 family members. The impairment of cancer stem-like traits was observed with reductions in ALDH1 activity, the CD24low/CD44high subpopulation, and mammosphere formation in vitro and in vivo. NCT-547 was an effective inhibitor of tumor growth and angiogenesis, and no toxic outcomes were found in initial hepatic and renal analysis. Our findings suggest that NCT-547 may have applications in addressing trastuzumab resistance in HER2-positive breast cancer.


2020 ◽  
Author(s):  
Yanlin Ren ◽  
Dongyin Chen ◽  
Junjie Chen ◽  
Zurong Zhai ◽  
Aiping Li ◽  
...  

Abstract Background The overexpression of HER2 is associated with malignant proliferation and invasiveness in breast cancer. Although HER2-targeting drugs have been clinically applied for cancer treatment, none of them could reduce overexpressed HER2. In this study, we reported that JAC1 could suppress proliferation of breast cancer cells via degrading HER2. Methods JWA-HER2 association was analyzed by IHC in 90 paired cases of breast cancer and adjacent non-cancerous tissues. Regulatory effect of JAC1, the agonist of JWA gene, on HER2-positive breast cancer cells was studied using colony formation assay. The effect of JAC1 on the localization of HER2 was detected by immunofluorescence microscopy assay. Western blotting, RT-PCR and immunoprecipitation assay were utilized to investigate the mechanisms of JWA on regulating HER2. Finally, xenograft mouse models were established in nude mice using BT474 cells to confirm the effect of JAC1 in vivo. Results JAC1, a small molecule agonist of JWA gene, dose-dependently suppressed proliferation in HER2-positive breast cancer in vitro and in vivo through degrading HER2. The mechanistic evidences showed that JAC1 increased the ubiquitination of HER2 at the K716 through the E3 ubiquitin ligase SMURF1. Furthermore, SMURF1 was activated due to reduced expression of NEDD4, an E3 ubiquitin ligase for SMURF1 through the JWA-p38-GATA-1-NEDD4 axis. Conclusions JAC1 suppresses the proliferation in HER2-positive breast cancer through the JWA/p38/GATA-1/NEDD4/SMURF1/HER2 signaling. JAC1 may serve as a novel therapeutic agent to breast cancer.


2021 ◽  
Vol 22 (22) ◽  
pp. 12213
Author(s):  
Haruka Yamaguchi ◽  
Jotaro On ◽  
Takao Morita ◽  
Takamasa Suzuki ◽  
Yasuo Okada ◽  
...  

Near-infrared photoimmunotherapy (NIR-PIT) is a promising cancer therapy based on a monoclonal antibody conjugated to a photosensitizer (IR700Dye) that is activated by near-infrared light irradiation. We previously reported on the use of NIR-PIT with a small protein mimetic, the Affibody molecule (6–7 kDa), instead of a monoclonal antibody. In this study, we investigated a combination of NIR-PIT for HER2-positive breast cancer cells (SK-BR3, MDA-MB361, and JIMT1) with HER2 Affibody-IR700Dye conjugate and trastuzumab-IR700Dye conjugate. HER2 Affibody and trastuzumab target different epitopes of the HER2 protein and do not compete. In vitro, the combination of NIR-PIT using both HER2 Affibody-IR700Dye conjugate and trastuzumab-IR700Dye conjugate induced necrotic cell death of HER2-positive breast cancer cells without damage to HER2-negative breast cancer cells (MCF7). It was more efficient than NIR-PIT using either the HER2 Affibody-IR700Dye conjugate alone or the trastuzumab-IR700Dye conjugate alone. Additionally, this combination of NIR-PIT was significantly effective against HER2 low-expressing cancer cells, trastuzumab-resistant cells (JIMT1), and brain metastatic cells of breast cancer (MDA-MB361). Furthermore, in vivo imaging exhibited the strong fluorescence intensity of both HER2 Affibody-IR700Dye conjugates and trastuzumab-Alexa488 conjugates in HER2-positive tumor, indicating that both HER2 Affibody and trastuzumab specifically bind to HER2-positive tumors without competing with each other. In conclusion, the combination of NIR-PIT using both HER2 Affibody and trastuzumab expands the targeting scope of NIR-PIT for HER2-positive breast cancer.


Sign in / Sign up

Export Citation Format

Share Document