scholarly journals Beta3-Adrenergic Receptor Activation Alleviates Cardiac Dysfunction in Cardiac Hypertrophy by Regulating Oxidative Stress

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mingming Zhang ◽  
Yuerong Xu ◽  
Jianghong Chen ◽  
Chaoshi Qin ◽  
Jing Liu ◽  
...  

Background. Excessive myocardial oxidative stress could lead to the congestive heart failure. NADPH oxidase is involved in the pathological process of left ventricular (LV) remodeling and dysfunction. β3-Adrenergic receptor (AR) could regulate cardiac dysfunction proved by recent researches. The molecular mechanism of β3-AR regulating oxidative stress, especially NADPH oxidase, remains to be determined. Methods. Cardiac hypertrophy was constructed by the transverse aortic constriction (TAC) model. ROS and NADPH oxidase subunits expression were assessed after β3-AR agonist (BRL) or inhibitor (SR) administration in cardiac hypertrophy. Moreover, the cardiac function, fibrosis, heart size, oxidative stress, and cardiomyocytes apoptosis were also detected. Results. β3-AR activation significantly alleviated cardiac hypertrophy and remodeling in pressure-overloaded mice. β3-AR stimulation also improved heart function and reduced cardiomyocytes apoptosis, oxidative stress, and fibrosis. Meanwhile, β3-AR stimulation inhibited superoxide anion production and decreased NADPH oxidase activity. Furthermore, BRL treatment increased the neuronal NOS (nNOS) expression in cardiac hypertrophy. Conclusion. β3-AR stimulation alleviated cardiac dysfunction and reduced cardiomyocytes apoptosis, oxidative stress, and fibrosis by inhibiting NADPH oxidases. In addition, the protective effect of β3-AR is largely attributed to nNOS activation in cardiac hypertrophy.

2012 ◽  
Vol 90 (9) ◽  
pp. 1257-1268 ◽  
Author(s):  
Jay H. Kramer ◽  
Christopher F. Spurney ◽  
Micaela Iantorno ◽  
Constantine Tziros ◽  
Joanna J. Chmielinska ◽  
...  

d-Propranolol (d-Pro: 2–8 mg·(kg body mass)–1·day–1) protected against cardiac dysfunction and oxidative stress during 3–5 weeks of iron overload (2 mg Fe–dextran·(g body mass)–1·week–1) in Sprague–Dawley rats. At 3 weeks, hearts were perfused in working mode to obtain baseline function; red blood cell glutathione, plasma 8-isoprostane, neutrophil basal superoxide production, lysosomal-derived plasma N-acetyl-β-galactosaminidase (NAGA) activity, ventricular iron content, and cardiac iron deposition were assessed. Hearts from the Fe-treated group of rats exhibited lower cardiac work (26%) and output (CO, 24%); end-diastolic pressure rose 1.8-fold. Further, glutathione levels increased 2-fold, isoprostane levels increased 2.5-fold, neutrophil superoxide increased 3-fold, NAGA increased 4-fold, ventricular Fe increased 4.9-fold; and substantial atrial and ventricular Fe-deposition occurred. d-Pro (8 mg) restored heart function to the control levels, protected against oxidative stress, and decreased cardiac Fe levels. After 5 weeks of Fe treatment, echocardiography revealed that the following were depressed: percent fractional shortening (%FS, 31% lower); left ventricular (LV) ejection fraction (LVEF, 17%), CO (25%); and aortic pressure maximum (Pmax, 24%). Mitral valve E/A declined by 18%, indicating diastolic dysfunction. Cardiac CD11b+ infiltrates were elevated. Low d-Pro (2 mg) provided modest protection, whereas 4–8 mg greatly improved LVEF (54%–75%), %FS (51%–81%), CO (43%–78%), Pmax (56%–100%), and E/A >100%; 8 mg decreased cardiac inflammation. Since d-Pro is an antioxidant and reduces cardiac Fe uptake as well as inflammation, these properties may preserve cardiac function during Fe overload.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 931
Author(s):  
Anureet K. Shah ◽  
Sukhwinder K. Bhullar ◽  
Vijayan Elimban ◽  
Naranjan S. Dhalla

Although heart failure due to a wide variety of pathological stimuli including myocardial infarction, pressure overload and volume overload is associated with cardiac hypertrophy, the exact reasons for the transition of cardiac hypertrophy to heart failure are not well defined. Since circulating levels of several vasoactive hormones including catecholamines, angiotensin II, and endothelins are elevated under pathological conditions, it has been suggested that these vasoactive hormones may be involved in the development of both cardiac hypertrophy and heart failure. At initial stages of pathological stimuli, these hormones induce an increase in ventricular wall tension by acting through their respective receptor-mediated signal transduction systems and result in the development of cardiac hypertrophy. Some oxyradicals formed at initial stages are also involved in the redox-dependent activation of the hypertrophic process but these are rapidly removed by increased content of antioxidants in hypertrophied heart. In fact, cardiac hypertrophy is considered to be an adaptive process as it exhibits either normal or augmented cardiac function for maintaining cardiovascular homeostasis. However, exposure of a hypertrophied heart to elevated levels of circulating hormones due to pathological stimuli over a prolonged period results in cardiac dysfunction and development of heart failure involving a complex set of mechanisms. It has been demonstrated that different cardiovascular abnormalities such as functional hypoxia, metabolic derangements, uncoupling of mitochondrial electron transport, and inflammation produce oxidative stress in the hypertrophied failing hearts. In addition, oxidation of catecholamines by monoamine oxidase as well as NADPH oxidase activation by angiotensin II and endothelin promote the generation of oxidative stress during the prolonged period by these pathological stimuli. It is noteworthy that oxidative stress is known to activate metallomatrix proteases and degrade the extracellular matrix proteins for the induction of cardiac remodeling and heart dysfunction. Furthermore, oxidative stress has been shown to induce subcellular remodeling and Ca2+-handling abnormalities as well as loss of cardiomyocytes due to the development of apoptosis, necrosis, and fibrosis. These observations support the view that a low amount of oxyradical formation for a brief period may activate redox-sensitive mechanisms, which are associated with the development of cardiac hypertrophy. On the other hand, high levels of oxyradicals over a prolonged period may induce oxidative stress and cause Ca2+-handling defects as well as protease activation and thus play a critical role in the development of adverse cardiac remodeling and cardiac dysfunction as well as progression of heart failure.


2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Qian Zhang ◽  
Xinhua Xiao ◽  
Jia Zheng ◽  
Ming Li ◽  
Miao Yu ◽  
...  

Increasing evidence shows that diabetes causes cardiac dysfunction. We hypothesized that a glucagon-like peptide-1 (GLP-1) analog, liraglutide, would attenuate cardiac dysfunction in diabetic rats. A total of 24 Sprague–Dawley (SD) rats were divided into two groups fed either a normal diet (normal, n=6) or a high-fat diet (HFD, n=18) for 4 weeks. Then, the HFD rats were injected with streptozotocin (STZ) to create a diabetic rat model. Diabetic rats were divided into three subgroups receiving vehicle (diabetic, n=6), a low dose of liraglutide (Llirag, 0.2 mg/kg/day, n=6), or a high dose of liraglutide (Hlirag, 0.4 mg/kg/day, n=6). Metabolic parameters, systolic blood pressure (SBP), heart rate (HR), left ventricular (LV) function, and whole genome expression of the heart were determined. Diabetic rats developed insulin resistance, increased blood lipid levels and oxidative stress, and impaired LV function, serum adiponectin, nitric oxide (NO). Liraglutide improved insulin resistance, serum adiponectin, NO, HR, and LV function and reduced blood triglyceride (TG), total cholesterol (TC) levels, and oxidative stress. Moreover, liraglutide increased heart nuclear receptor subfamily 1, group H, member 3 (Nr1h3), peroxisome proliferator activated receptor (Ppar) α (Pparα), and Srebp expression and reduced diacylglycerol O-acyltransferase 1 (Dgat) and angiopoietin-like 3 (Angptl3) expression. Liraglutide prevented cardiac dysfunction by activating the PPARα pathway to inhibit Dgat expression and oxidative stress in diabetic rats.


2018 ◽  
Vol 46 (4) ◽  
pp. 1683-1692 ◽  
Author(s):  
Hongmei Lang ◽  
Yang Xiang ◽  
Zhihua Ai ◽  
Zhiqing You ◽  
Xiaolan Jin ◽  
...  

Background/Aims: Excessive salt intake and left ventricular hypertrophy (LVH) are both critical for the development of hypertension and heart failure. The uncoupling protein 3 (UCP3) plays a cardio-protective role in early heart failure development. However, the potential role for UCP3 in salt intake and LVH is unclear. Methods: UCP3-/- and C57BL/6 mice were placed on either a normal-salt (NS, 0.5%) or a high-salt (HS, 8%) diet for 24 weeks. The cardiac function, endurance capacity, energy expenditure, and mitochondrial functional capacity were measured in each group. Results: Elevated blood pressure was only observed in HS-fed UCP3-/- mice. High salt induced cardiac hypertrophy and dysfunction were observed in both C57BL/6 and UCP3-/- mice. However, the cardiac lesions were more profound in HS-fed UCP3-/- mice. Furthermore, HS-fed UCP3-/-mice experienced more severe mitochondrial respiratory dysfunction compared with HS-fed C57BL/6 mice, represented by the decreased volume of oxygen consumption and heat production at the whole-body level. Conclusion: UCP3 protein was involved in the incidence of high-salt induced hypertension and the progression of cardiac dysfunction in the early stages of heart failure. UCP3 ablation exacerbated high-salt-induced cardiac hypertrophy and cardiac dysfunction.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Zhongbing Lu ◽  
John Fassett ◽  
Xin Xu ◽  
Xinli Hu ◽  
Guangshuo Zhu ◽  
...  

Endogenous adenosine can protect the overloaded heart against the development of hypertrophy and heart failure, but the contribution of A 1 receptors (A 1 R) and A 3 receptors(A 3 R) is not known. To test the hypothesis A 1 R and A 3 R can protect the heart against systolic overload, we exposed A 3 R gene deficient (A 3 R KO) mice and A 1 R KO mice to transverse aortic constriction (TAC). Contrary to our hypothesis, A 3 R KO attenuated 5 weeks TAC-induced left ventricular (LV) hypertrophy (ratio of ventricular mass/body weight increased to 7.6 ±0.3 mg/g in wild type (Wt) mice as compared with 6.3±0.4 mg/g in KO), fibrosis and dysfunction (LV ejection fraction decreased to 43±2.5% and 55±4.2% in Wt and KO mice, respectively). A 3 R KO also attenuated the TAC-induced increases of myocardial ANP and the oxidative stress markers 3-nitrotyrosine(3-NT ) and 4-hydroxynonenal. In addition, A 3 R KO significantly attenuated TAC-induced activation of multiple MAP kinase pathways, and the activation of Akt-GSK signaling pathway. In contrast, A 1 R-KO increased TAC-induced mortality, but did not alter ventricular hypertrophy or dysfunction compared to Wt mice. In mice in which extracellular adenosine production was impaired by CD73 KO, TAC caused greater hypertrophy and dysfunction, and increased myocardial 3-NT, indicates that extracellular adenosine protects heart against TAC-induced ventricular oxidative stress and hypertrophy. In neonatal rat cardiomyocytes induced to hypertrophy with phenylephrine, the adenosine analogue 2-chloroadenosine (CADO) reduced cell area, protein synthesis, ANP and 3-NT. Antagonism of A3R significantly potentiated the anti-hypertrophic effects of CADO. Our data demonstrated that extracellular adenosine exerts protective effects on the overloaded heart, but A 3 R act counter to the protective effect of adenosine. The data suggest that selective attenuation of A 3 R activity might be a novel approach to attenuate pressure overload-induced myocardial oxidative stress, LV hypertrophy and dysfunction. This research has received full or partial funding support from the American Heart Association, AHA Midwest Affiliate (Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, South Dakota & Wisconsin).


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Xian Wu Cheng ◽  
Kenji Okumura ◽  
Kohzo Nagata ◽  
Aiko Inoue ◽  
Jie Zhang ◽  
...  

Objective: This work was undertaken to investigate the comparative effect of angiotensin II type 1 receptor blocker (ARB) and a combination of ARB and calcium channel blocker (CCB) on left ventricular (LV) remodeling during the development of hypertensive heart failure (H-HF). Methods and Results: We treated 8% salt-loaded Dahl salt-sensitive hypertensive rats (n = 10 for each group) with vehicle, hydralazine (5 mg/kg/d), olmesartan (OLM, 5 mg/kg/d), or combined OLM and azelnidipine (AZE, 2mg/kg/d) for 8 weeks. The rats fed 0.3% salt served as age-matched controls. The abundance of Cat mRNAs and proteins were localized in cardiac myocytes (CMCs), and Cat-dependent activities were increased by 4.1-fold in the LV of H-HF rats (n = 8, P< 0.001) and were reduced by OLM treatment. OLM suppressed the elastic lamina degradation concomitant with decreased local Cat S expression in intracoronary smooth muscle cells (SMCs) and restored the balance of elastin to collagen in the LV tissue of H-HF rats (H-HF 4.6 ± 0.9% vs. OLM 15.5 ± 2.1% elastin content/collagen content (%), n = 6, P< 0.0±1; control 22±2.1%). OLM suppressed not only macrophage infiltration but also levels of NADPH oxidase components (p22 phox , gp91 phox , and p47 phox ) concomitant with decreased NADPH activity and O2- production in LV tissues of H-HF rats. Along with its comparable anti-inflammatory effect, add-on AZE further improved all of these parameter changes by OLM. Furthermore, combination therapy significantly enhanced the improvement of LV fibrosis, hypertrophy, stiffness, and dysfunction by OLM. In vitro, H 2 O 2 stimulated Cat S mRNA and protein expression and activity, and these increases were abolished by pretreatment with the antioxidants such as MnTmPyp (50 μmol/L) and N-acetylcysteine (5 mmol/L) as well as a NADPH oxidase inhibitor apocynin (100 μmol/L) in culture CMCs, SMCs, and macrophages (n = 6, P< 0.01). Conclusions: OLM and a combination of OLM and AZE exerted cardioprotective effects in hypertensive HF, via elastolytic Cat activation inhibition by the reduction of NADPH oxidase-dependent superoxide anion production. AZE enhanced the cardioprotective effects of OLM. Thus, the combination of ARB with CBB is a promising potential therapeutic strategy for H-HF.


2000 ◽  
Vol 89 (5) ◽  
pp. 2041-2048 ◽  
Author(s):  
Masayuki Takamura ◽  
Robert Parent ◽  
Peter Cernacek ◽  
Michel Lavallée

We hypothesized that endothelin (ET) release during exercise may be triggered by α-adrenergic-receptor activation and thereby influence coronary hemodynamics and O2 metabolism in dogs. Exercise resulted in coronary blood flow increases (to 1.88 ± 0.26 from 1.10 ± 0.12 ml · min−1 · g−1) and in a fall ( P < 0.01) in coronary sinus O2saturation (17.4 ± 1.5 to 9.6 ± 0.7 vol%), whereas myocardial O2 consumption (MV˙o 2) increased (109 ± 13% from 145 ± 16 μl O2 · min−1 · g−1). Tezosentan, a dual ETA/ETB-receptor blocker, slightly reduced mean arterial pressure (MAP) and increased heart rate throughout exercise. The relationship between coronary sinus O2 saturation and MV˙o 2 was shifted upward ( P < 0.05) after tezosentan administration; i.e., as MV˙o 2 increased during exercise, coronary sinus O2 saturation was disproportionately higher after ET-receptor blockade. After propranolol, tezosentan resulted in significant decreases ( P < 0.05) in left ventricular pressure, the first derivative of left ventricular pressure over time, and MAP during exercise. As MV˙o 2 increased during exercise, coronary sinus O2 saturation levels after tezosentan became superimposable over those observed before ET-receptor blockade. Thus dual blockade of ETA/ETBreceptors alters coronary hemodynamics and O2 metabolism during exercise, but ET activity failed to increase beyond baseline levels.


2019 ◽  
Vol 20 (9) ◽  
pp. 2267 ◽  
Author(s):  
Thomas J. LaRocca ◽  
Perry Altman ◽  
Andrew A. Jarrah ◽  
Ron Gordon ◽  
Edward Wang ◽  
...  

Activation of multiple pathways is associated with cardiac hypertrophy and heart failure. We previously published that CXCR4 negatively regulates β-adrenergic receptor (β-AR) signaling and ultimately limits β-adrenergic diastolic (Ca2+) accumulation in cardiac myocytes. In isolated adult rat cardiac myocytes; CXCL12 treatment prevented isoproterenol-induced hypertrophy and interrupted the calcineurin/NFAT pathway. Moreover; cardiac specific CXCR4 knockout mice show significant hypertrophy and develop cardiac dysfunction in response to chronic catecholamine exposure in an isoproterenol-induced (ISO) heart failure model. We set this study to determine the structural and functional consequences of CXCR4 myocardial knockout in the absence of exogenous stress. Cardiac phenotype and function were examined using (1) gated cardiac magnetic resonance imaging (MRI); (2) terminal cardiac catheterization with in vivo hemodynamics; (3) histological analysis of left ventricular (LV) cardiomyocyte dimension; fibrosis; and; (4) transition electron microscopy at 2-; 6- and 12-months of age to determine the regulatory role of CXCR4 in cardiomyopathy. Cardiomyocyte specific-CXCR4 knockout (CXCR4 cKO) mice demonstrate a progressive cardiac dysfunction leading to cardiac failure by 12-months of age. Histological assessments of CXCR4 cKO at 6-months of age revealed significant tissue fibrosis in knockout mice versus wild-type. The expression of atrial naturietic factor (ANF); a marker of cardiac hypertrophy; was also increased with a subsequent increase in gross heart weights. Furthermore, there were derangements in both the number and the size of the mitochondria within CXCR4 cKO hearts. Moreover, CXCR4 cKO mice were more sensitive to catocholamines, their response to β-AR agonist challenge via acute isoproterenol (ISO) infusion demonstrated a greater increase in ejection fraction, dp/dtmax, and contractility index. Interestingly, prior to ISO infusion, there were significant differences in baseline hemodynamics between the CXCR4 cKO compared to littermate controls. However, upon administering ISO, the CXCR4 cKO responded in a robust manner overcoming the baseline hemodynamic deficits reaching WT values supporting our previous data that CXCR4 negatively regulates β-AR signaling. This further supports that, in the absence of the physiologic negative modulation, there is an overactivation of down-stream pathways, which contribute to the development and progression of contractile dysfunction. Our results demonstrated that CXCR4 plays a non-developmental role in regulating cardiac function and that CXCR4 cKO mice develop a progressive cardiomyopathy leading to clinical heart failure.


2014 ◽  
Vol 306 (10) ◽  
pp. H1453-H1463 ◽  
Author(s):  
Fuzhong Qin ◽  
Deborah A. Siwik ◽  
David R. Pimentel ◽  
Robert J. Morgan ◽  
Andreia Biolo ◽  
...  

Oxidative stress in the myocardium plays an important role in the pathophysiology of hemodynamic overload. The mechanism by which reactive oxygen species (ROS) in the cardiac myocyte mediate myocardial failure in hemodynamic overload is not known. Accordingly, our goals were to test whether myocyte-specific overexpression of peroxisomal catalase (pCAT) that localizes in the sarcoplasm protects mice from hemodynamic overload-induced failure and prevents oxidation and inhibition of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), an important sarcoplasmic protein. Chronic hemodynamic overload was caused by ascending aortic constriction (AAC) for 12 wk in mice with myocyte-specific transgenic expression of pCAT. AAC caused left ventricular hypertrophy and failure associated with a generalized increase in myocardial oxidative stress and specific oxidative modifications of SERCA at cysteine 674 and tyrosine 294/5. pCAT overexpression ameliorated myocardial hypertrophy and apoptosis, decreased pathological remodeling, and prevented the progression to heart failure. Likewise, pCAT prevented oxidative modifications of SERCA and increased SERCA activity without changing SERCA expression. Thus cardiac myocyte-restricted expression of pCAT effectively ameliorated the structural and functional consequences of chronic hemodynamic overload and increased SERCA activity via a post-translational mechanism, most likely by decreasing inhibitory oxidative modifications. In pressure overload-induced heart failure cardiac myocyte cytosolic ROS play a pivotal role in mediating key pathophysiologic events including hypertrophy, apoptosis, and decreased SERCA activity.


2018 ◽  
Vol 115 (30) ◽  
pp. E7129-E7138 ◽  
Author(s):  
Shinichiro Sunamura ◽  
Kimio Satoh ◽  
Ryo Kurosawa ◽  
Tomohiro Ohtsuki ◽  
Nobuhiro Kikuchi ◽  
...  

Although postcapillary pulmonary hypertension (PH) is an important prognostic factor for patients with heart failure (HF), its pathogenesis remains to be fully elucidated. To elucidate the different roles of Rho-kinase isoforms, ROCK1 and ROCK2, in cardiomyocytes in response to chronic pressure overload, we performed transverse aortic constriction (TAC) in cardiac-specific ROCK1-deficient (cROCK1−/−) and ROCK2-deficient (cROCK2−/−) mice. Cardiomyocyte-specific ROCK1 deficiency promoted pressure-overload-induced cardiac dysfunction and postcapillary PH, whereas cardiomyocyte-specific ROCK2 deficiency showed opposite results. Histological analysis showed that pressure-overload-induced cardiac hypertrophy and fibrosis were enhanced in cROCK1−/− mice compared with controls, whereas cardiac hypertrophy was attenuated in cROCK2−/− mice after TAC. Consistently, the levels of oxidative stress were up-regulated in cROCK1−/− hearts and down-regulated in cROCK2−/− hearts compared with controls after TAC. Furthermore, cyclophilin A (CyPA) and basigin (Bsg), both of which augment oxidative stress, enhanced cardiac dysfunction and postcapillary PH in cROCK1−/− mice, whereas their expressions were significantly lower in cROCK2−/− mice. In clinical studies, plasma levels of CyPA were significantly increased in HF patients and were higher in patients with postcapillary PH compared with those without it. Finally, high-throughput screening demonstrated that celastrol, an antioxidant and antiinflammatory agent, reduced the expressions of CyPA and Bsg in the heart and the lung, ameliorating cardiac dysfunction and postcapillary PH induced by TAC. Thus, by differentially affecting CyPA and Bsg expressions, ROCK1 protects and ROCK2 jeopardizes the heart from pressure-overload HF with postcapillary PH, for which celastrol may be a promising agent.


Sign in / Sign up

Export Citation Format

Share Document