scholarly journals UCP3 Ablation Exacerbates High-Salt Induced Cardiac Hypertrophy and Cardiac Dysfunction

2018 ◽  
Vol 46 (4) ◽  
pp. 1683-1692 ◽  
Author(s):  
Hongmei Lang ◽  
Yang Xiang ◽  
Zhihua Ai ◽  
Zhiqing You ◽  
Xiaolan Jin ◽  
...  

Background/Aims: Excessive salt intake and left ventricular hypertrophy (LVH) are both critical for the development of hypertension and heart failure. The uncoupling protein 3 (UCP3) plays a cardio-protective role in early heart failure development. However, the potential role for UCP3 in salt intake and LVH is unclear. Methods: UCP3-/- and C57BL/6 mice were placed on either a normal-salt (NS, 0.5%) or a high-salt (HS, 8%) diet for 24 weeks. The cardiac function, endurance capacity, energy expenditure, and mitochondrial functional capacity were measured in each group. Results: Elevated blood pressure was only observed in HS-fed UCP3-/- mice. High salt induced cardiac hypertrophy and dysfunction were observed in both C57BL/6 and UCP3-/- mice. However, the cardiac lesions were more profound in HS-fed UCP3-/- mice. Furthermore, HS-fed UCP3-/-mice experienced more severe mitochondrial respiratory dysfunction compared with HS-fed C57BL/6 mice, represented by the decreased volume of oxygen consumption and heat production at the whole-body level. Conclusion: UCP3 protein was involved in the incidence of high-salt induced hypertension and the progression of cardiac dysfunction in the early stages of heart failure. UCP3 ablation exacerbated high-salt-induced cardiac hypertrophy and cardiac dysfunction.

2019 ◽  
Vol 20 (9) ◽  
pp. 2267 ◽  
Author(s):  
Thomas J. LaRocca ◽  
Perry Altman ◽  
Andrew A. Jarrah ◽  
Ron Gordon ◽  
Edward Wang ◽  
...  

Activation of multiple pathways is associated with cardiac hypertrophy and heart failure. We previously published that CXCR4 negatively regulates β-adrenergic receptor (β-AR) signaling and ultimately limits β-adrenergic diastolic (Ca2+) accumulation in cardiac myocytes. In isolated adult rat cardiac myocytes; CXCL12 treatment prevented isoproterenol-induced hypertrophy and interrupted the calcineurin/NFAT pathway. Moreover; cardiac specific CXCR4 knockout mice show significant hypertrophy and develop cardiac dysfunction in response to chronic catecholamine exposure in an isoproterenol-induced (ISO) heart failure model. We set this study to determine the structural and functional consequences of CXCR4 myocardial knockout in the absence of exogenous stress. Cardiac phenotype and function were examined using (1) gated cardiac magnetic resonance imaging (MRI); (2) terminal cardiac catheterization with in vivo hemodynamics; (3) histological analysis of left ventricular (LV) cardiomyocyte dimension; fibrosis; and; (4) transition electron microscopy at 2-; 6- and 12-months of age to determine the regulatory role of CXCR4 in cardiomyopathy. Cardiomyocyte specific-CXCR4 knockout (CXCR4 cKO) mice demonstrate a progressive cardiac dysfunction leading to cardiac failure by 12-months of age. Histological assessments of CXCR4 cKO at 6-months of age revealed significant tissue fibrosis in knockout mice versus wild-type. The expression of atrial naturietic factor (ANF); a marker of cardiac hypertrophy; was also increased with a subsequent increase in gross heart weights. Furthermore, there were derangements in both the number and the size of the mitochondria within CXCR4 cKO hearts. Moreover, CXCR4 cKO mice were more sensitive to catocholamines, their response to β-AR agonist challenge via acute isoproterenol (ISO) infusion demonstrated a greater increase in ejection fraction, dp/dtmax, and contractility index. Interestingly, prior to ISO infusion, there were significant differences in baseline hemodynamics between the CXCR4 cKO compared to littermate controls. However, upon administering ISO, the CXCR4 cKO responded in a robust manner overcoming the baseline hemodynamic deficits reaching WT values supporting our previous data that CXCR4 negatively regulates β-AR signaling. This further supports that, in the absence of the physiologic negative modulation, there is an overactivation of down-stream pathways, which contribute to the development and progression of contractile dysfunction. Our results demonstrated that CXCR4 plays a non-developmental role in regulating cardiac function and that CXCR4 cKO mice develop a progressive cardiomyopathy leading to clinical heart failure.


2019 ◽  
Vol 23 (6) ◽  
pp. 92-99
Author(s):  
I. G. Kayukov ◽  
O. N. Beresneva ◽  
M. M. Parastaeva ◽  
G. T. Ivanova ◽  
A. N. Kulikov ◽  
...  

BACKGROUND. Increased salt intake is associated with a number of cardiovascular events, including increased blood pressure (BP) and the development of left ventricular hypertrophy (LVH). However, there is much evidence that a high content of sodium chloride in the diet does not always lead to an increase in BP, but almost inevitably causes cardiac remodeling, in particular, LVH. Many aspects of myocardial remodeling induced by high sodium content in the food have not been studied enough. THE AIM of the study was to trace the echocardiographic changes in Wistar rats fed the high salt ration and the high salt ration supplemented with soy proteins.MATERIAL AND METHODS. Echocardiography and BP measurements were performed on male Wistar rats, divided into three groups. The first (control; n = 8) included rats that received standard laboratory feed (20.16 % animal protein and 0.34 % NaCl); the second (n = 10) – animals that received standard feed and 8 % NaCl (high salt ration). The third group (n = 10) consisted of rats who consumed a low-protein diet containing 10 % soy protein isolate (SUPRO 760) and 8 % NaCl. The follow-up period was 2 and 4 months.THE RESULTS of the study showed that: (1) the intake of a large amount of salt with a diet does not necessarily lead to the formation of arterial hypertension; (2) despite the absence of a distinct increase in BP, under these conditions signs of cardiac remodeling, in particular, LVH, appear rather quickly; (3) supplementing a high-salt diet with soy isolates counteracts the development of LVH.CONCLUSION. High salt intake with food can cause heart remodeling, regardless of blood pressure, while soy proteins can counteract this process.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 931
Author(s):  
Anureet K. Shah ◽  
Sukhwinder K. Bhullar ◽  
Vijayan Elimban ◽  
Naranjan S. Dhalla

Although heart failure due to a wide variety of pathological stimuli including myocardial infarction, pressure overload and volume overload is associated with cardiac hypertrophy, the exact reasons for the transition of cardiac hypertrophy to heart failure are not well defined. Since circulating levels of several vasoactive hormones including catecholamines, angiotensin II, and endothelins are elevated under pathological conditions, it has been suggested that these vasoactive hormones may be involved in the development of both cardiac hypertrophy and heart failure. At initial stages of pathological stimuli, these hormones induce an increase in ventricular wall tension by acting through their respective receptor-mediated signal transduction systems and result in the development of cardiac hypertrophy. Some oxyradicals formed at initial stages are also involved in the redox-dependent activation of the hypertrophic process but these are rapidly removed by increased content of antioxidants in hypertrophied heart. In fact, cardiac hypertrophy is considered to be an adaptive process as it exhibits either normal or augmented cardiac function for maintaining cardiovascular homeostasis. However, exposure of a hypertrophied heart to elevated levels of circulating hormones due to pathological stimuli over a prolonged period results in cardiac dysfunction and development of heart failure involving a complex set of mechanisms. It has been demonstrated that different cardiovascular abnormalities such as functional hypoxia, metabolic derangements, uncoupling of mitochondrial electron transport, and inflammation produce oxidative stress in the hypertrophied failing hearts. In addition, oxidation of catecholamines by monoamine oxidase as well as NADPH oxidase activation by angiotensin II and endothelin promote the generation of oxidative stress during the prolonged period by these pathological stimuli. It is noteworthy that oxidative stress is known to activate metallomatrix proteases and degrade the extracellular matrix proteins for the induction of cardiac remodeling and heart dysfunction. Furthermore, oxidative stress has been shown to induce subcellular remodeling and Ca2+-handling abnormalities as well as loss of cardiomyocytes due to the development of apoptosis, necrosis, and fibrosis. These observations support the view that a low amount of oxyradical formation for a brief period may activate redox-sensitive mechanisms, which are associated with the development of cardiac hypertrophy. On the other hand, high levels of oxyradicals over a prolonged period may induce oxidative stress and cause Ca2+-handling defects as well as protease activation and thus play a critical role in the development of adverse cardiac remodeling and cardiac dysfunction as well as progression of heart failure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thanachai Methatham ◽  
Shota Tomida ◽  
Natsuka Kimura ◽  
Yasushi Imai ◽  
Kenichi Aizawa

AbstractIn heart failure (HF) caused by hypertension, the myocyte size increases, and the cardiac wall thickens. A low-molecular-weight compound called ICG001 impedes β-catenin-mediated gene transcription, thereby protecting both the heart and kidney. However, the HF-preventive mechanisms of ICG001 remain unclear. Hence, we investigated how ICG001 can prevent cardiac hypertrophy and fibrosis induced by transverse aortic constriction (TAC). Four weeks after TAC, ICG001 attenuated cardiac hypertrophy and fibrosis in the left ventricular wall. The TAC mice treated with ICG001 showed a decrease in the following: mRNA expression of brain natriuretic peptide (Bnp), Klf5, fibronectin, β-MHC, and β-catenin, number of cells expressing the macrophage marker CD68 shown in immunohistochemistry, and macrophage accumulation shown in flow cytometry. Moreover, ICG001 may mediate the substrates in the glycolysis pathway and the distinct alteration of oxidative stress during cardiac hypertrophy and HF. In conclusion, ICG001 is a potential drug that may prevent cardiac hypertrophy and fibrosis by regulating KLF5, immune activation, and the Wnt/β-catenin signaling pathway and inhibiting the inflammatory response involving macrophages.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Y.W Liu ◽  
H.Y Chang ◽  
C.H Lee ◽  
W.C Tsai ◽  
P.Y Liu ◽  
...  

Abstract Background and purpose Left ventricular (LV) global peak systolic longitudinal strain (GLS) by speckle-tracking echocardiography is a sensitive modality for the detection of subclinical LV systolic dysfunction and a powerful prognostic predictor. However, the clinical implication of LV GLS in lymphoma patients receiving anti-cancer therapy remains unknown. Methods We prospectively enrolled 74 patients (57.9±17.0 years old, 57% male) with lymphoma who underwent echocardiography prior to chemotherapy, post 3rd and 6th cycle and 1 year after chemotherapy. Cancer therapy-related cardiac dysfunction (CTRCD) is defined as the reduction of absolute GLS value from baseline of ≥15%. All the eligible patients underwent a cardiopulmonary exercise test (CPET) upon completion of 3 cycles of anti-cancer therapy. The primary outcome was defined as a composite of all-cause mortality and heart failure events. Results Among 36 (49%) patients with CTRCD, LV GLS was significantly decreased after the 3rd cycle of chemotherapy (20.1±2.6% vs. 17.5±2.3%, p<0.001). In the multivariable analysis, male sex and anemia (hemoglobin <11 g/dL) were found to be independent risk factors of CTRCD. Objectively, patients with CTRCD had lower minute oxygen consumption/kg (VO2/kg) and lower VO2/kg value at anaerobic threshold in the CPET. The incidence of the primary composite outcome was higher in the CTRCD group than in the non-CTRCD group (hazard ratio 3.21; 95% CI, 1.04–9.97; p=0.03). Conclusion LV GLS is capable of detecting early cardiac dysfunction in lymphoma patients receiving anti-cancer therapy. Patients with CTRCD not only had a reduced exercise capacity but also a higher risk of all-cause mortality and heart failure events. Change of LVEF and GLS after cancer Tx Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): The Ministry of Science and Technology (MOST), Taiwan


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Satoshi Okumura ◽  
Yunzhe Bai ◽  
Meihua Jin ◽  
Sayaka Suzuki ◽  
Akiko Kuwae ◽  
...  

The sympathetic nervous system and proinflammatory cytokines are believed to play independent roles in the pathophysiology of heart failure. However, the recent identification of Epac (exchange protein activated by cyclic AMP), a new cyclic AMP-binding protein that directly activates Rap1, have implicated that there may be a potential cross talk between the sympathetic and cytokine signals. In order to examine the role of Epac in cytokine signal to regulate cardiac function, we have generated transgenic mice expressing the human Epac1 gene under the control of alpha-cardiac myosin heavy chain promoter (Epac1-TG), and examined their response in lipopolysaccharide (LPS)-induced cardiac dysfunction, a well established model for sepsis-induced cardiac dysfunction. Sepsis-induced cardiac dysfunction results from the production of proinflammatory cytokines. At baseline, left ventricular ejection fraction (LVEF) was similar (TG vs. NTG, 67±1.7 vs. 69±2.1%, n =7–9). The degree of cardiac hypertrophy (LV(mg)/tibia(mm)) was also similar at 3 months old (TG vs. NTG 4.0±0.1 vs. 4.2±0.1, n =5–6), but it became slightly but significantly greater in Epac1-TG at 5 month old (TG vs. NTG 4.9±0.1 vs. 4.4±0.1, p< 0.05, n =5–7). LPS (5mg/kg) elicited a significant and robust reduction of LVEF in both Epac1-TG and NTG, but the magnitude of this decrease was much less in Epac1-TG at 6 hr after injection (TG vs. NTG 48±2.4 vs. 57±1.8%, p< 0.01, n =6–9). At 24 hr after injection, cardiac function was restored to the baseline in both Epac1-TG and NTG. We also examined the activation of JAK-STAT pathway at 24 hr after injection. The tyrosine phosphorylation of STAT1 (Tyr701) and STAT3 (Tyr705) in LV, which is an indicator of STAT activation, was reduced to a greater degree in Epac1-TG by 31±8.8% ( p< 0.05, n =4) and 29±5.9% ( p< 0.05, n =7), respectively, relative to that in NTG. Taken together, Epac1 protects the heart from the cytokine-induced cardiac dysfunction, at least in part, through the inhibition of the JAK-STAT pathway, suggesting the beneficial role played by sympathetic signal to antagonize proinflammatory cytokine signal in heart failure.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Yang Yu ◽  
Baojian Xue ◽  
Hanzeng Li ◽  
Qing Chen ◽  
Mingxuan Li ◽  
...  

TACE is a key metalloprotease involved in ectodomain shedding of tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-α. We previously reported that TACE-mediated production of TNF-α in the hypothalamic paraventricular nucleus (PVN) contributes to the sympathetic excitation in heart failure (HF). Additionally, the upregulated TGF-α in the PVN transactivates the epidermal growth factor receptor (EGFR) to activate extracellular signal-regulated kinase (ERK) 1/2 in HF. Here we sought to determine whether central inhibition of TACE attenuates neuroinflammation and prevents the progress of HF. Male rats underwent coronary artery ligation to induce HF or sham surgery (Sham). These rats were treated with bilateral PVN microinjection of a TACE siRNA or control siRNA while some rats received a 4-week intracerebroventricular (ICV) infusion of TACE inhibitor TAPI-0 or vehicle. Compared with Sham rats, HF rats treated with control siRNA, had higher (*P<0.05) levels of TNF-α (7.88±1.32* vs 2.77±0.98 pg/mL) and TGF-α (28.27±2.76* vs 11.62±2.48 pg/mL) in cerebrospinal fluid, and increased mRNA expression of TACE (2.53±0.30* vs 1.04±0.12), TNF-α (3.43±0.55* vs 1.03±0.11), TNF-α receptor 1 (2.32±0.27* vs 1.07±0.19), cyclooxygenase-2 (2.96±0.31* vs 1.10±0.19) and TGF-α (2.68±0.41* vs 1.06±0.14) in the PVN, but these levels were markedly reduced (39-54%*) in TACE siRNA-treated HF rats. Compared with control HF rats, HF rats treated with TACE siRNA had reduced expression of phosphorylated (p-) NF-κB p65 (1.27±0.14 vs 0.84±0.07*), p-EGFR (0.52±0.05 vs 0.37±0.04*) and p-ERK1/2 (1.06±0.10 vs 0.62±0.09*) in the PVN. Moreover, the elevated plasma norepinephrine levels, lung/body weight, heart/body weight and left ventricular (LV) end-diastolic pressure along with decreased LV dP/dt max in HF rats-treated with control siRNA were significantly attenuated in HF rats treated with TACE siRNA. Treatments with TACE siRNA in the PVN also improved the indicators of cardiac hypertrophy and fibrosis of HF. ICV infusion of TAPI-0 had the similar effects with PVN TACE siRNA on these variables in HF. These data indicate that central interventions suppressing TACE activity ameliorate neuroinflammation, sympathetic activation and cardiac dysfunction in HF.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Christoph D Rau ◽  
Milagros Romay ◽  
Jessica Wang ◽  
Aldons J Lusis ◽  
Yibin Wang

Heart Failure (HF) is a complex disease involving numerous environmental and genetic factors. We previously reported a genetic analysis of HF traits in a population of inbred mouse strains treated with isoproterenol, a β-adrenergic agonist used to mimic catecholamine-driven cardiac hypertrophy. We now present a systems genetics analysis in which we have used left ventricular transcript levels from these mice to perform co-expression network modeling. We constructed gene networks composed of 8,126 genes and 20 modules using the wMICA algorithm. In the wMICA network generated from treated hearts, we identified a module with significant correlations to several HF-related phenotypic traits. Further analysis of this module showed significant over-representation of genes known to contribute to the development of HF. Using the causal modeling algorithm NEO, we identified the gene Adamts2 as a putative master regulator of the module. We then validated the role of this gene through siRNA-mediated knockdown in neonatal rat ventricular myocytes (NRVM). Consistent with our model, Adamts2 silencing was able to regulate the expression of the genes residing within the module as well as impairing isoproterenol-induced cell size changes . Our results provide a view of higher order interactions in heart failure with potential to facilitate diagnostic and therapeutic approaches.


2001 ◽  
Vol 280 (6) ◽  
pp. H2868-H2875 ◽  
Author(s):  
Michael J. Kenney ◽  
Timothy I. Musch ◽  
Mark L. Weiss

Heart failure (HF) alters the regulation of basal sympathetic nerve discharge (SND); however, the effect of HF on SND responses to acute stress is not well established. In the present study, renal SND responses to hyperthermia were determined in chloralose-anesthetized HF rats and in sham controls. Whole body heating (colonic temperature increased from 38 to 41°C) was used as an acute stressor because increased internal body temperature provides a potent stimulus to the sympathetic nervous system. Left ventricular end-diastolic pressure and the right ventricular wt-to-body wt ratio were increased ( P < 0.05) in HF compared with sham rats. The following observations were made: 1) renal sympathoexcitatory responses to heating were significantly reduced in HF compared with sham rats, 2) renal blood flow remained unchanged from control levels during heating in HF rats but was significantly reduced in sham rats, and 3) renal SND responses to heating were significantly higher in HF rats with bilateral lesions of the hypothalamic paraventricular nucleus (PVN) compared with sham PVN-lesioned HF rats. These results demonstrate a marked attenuation in the responsiveness of renal SND to heating in HF rats and suggest that HF alters the organization of neural pathways mediating SND responses to heating.


Planta Medica ◽  
2020 ◽  
Vol 86 (17) ◽  
pp. 1304-1312
Author(s):  
Nurmila Sari ◽  
Yasufumi Katanasaka ◽  
Hiroki Honda ◽  
Yusuke Miyazaki ◽  
Yoichi Sunagawa ◽  
...  

AbstractPathological stresses such as pressure overload and myocardial infarction induce cardiac hypertrophy, which increases the risk of heart failure. Cacao bean polyphenols have recently gained considerable attention for their beneficial effects on cardiovascular diseases. This study investigated the effect of cacao bean polyphenols on the development of cardiac hypertrophy and heart failure. Cardiomyocytes from neonatal rats were pre-treated with cacao bean polyphenols and then stimulated with 30 µM phenylephrine. C57BL/6j male mice were subjected to sham or transverse aortic constriction surgery and then orally administered with vehicle or cacao bean polyphenols. Cardiac hypertrophy and function were examined by echocardiography. In cardiomyocytes, cacao bean polyphenols significantly suppressed phenylephrine-induced cardiomyocyte hypertrophy and hypertrophic gene transcription. Extracellular signal-regulated kinase 1/2 and GATA binding protein 4 phosphorylation induced by phenylephrine was inhibited by cacao bean polyphenols treatment in the cardiomyocytes. Cacao bean polyphenols treatment at 1200 mg/kg significantly ameliorated left ventricular posterior wall thickness, fractional shortening, hypertrophic gene transcription, cardiac hypertrophy, cardiac fibrosis, and extracellular signal-regulated kinase 1/2 phosphorylation induced by pressure overload. In conclusion, these findings suggest that cacao bean polyphenols prevent pressure overload-induced cardiac hypertrophy and systolic dysfunction by inhibiting the extracellular signal-regulated kinase 1/2-GATA binding protein 4 pathway in cardiomyocytes. Thus, cacao bean polyphenols may be useful for heart failure therapy in humans.


Sign in / Sign up

Export Citation Format

Share Document