scholarly journals Investigation on Friction Stir Weldability Characteristics of AA7075-T651 and AA6061-T6 Based Nanocomposites

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
M. Madhusudan ◽  
S. P. Shanmuganatan ◽  
Kurse Shridhar ◽  
Jacob John ◽  
R. Krishnamurthy ◽  
...  

Friction stir welding (FSW) is an emerging solid-state process and alternative to fusion welding, wherein frictional heat is generated between a nonconsumable rotating steel tool and the work substrate. The present study focuses on the influence of the operating attributes like tool pin contact geometry, welding speed, and tool rotational speed on dissimilar aluminum matrix nanocomposites. AA6061-T6 and AA7075-T651 aluminum alloy plates were joined via double-pass FSW with the inclusion of 5 vol. % of nanoscale h-BN particles. Welding was performed with four rotational speeds (600, 800, 900, and 1000 rpm), three traversing speeds (30, 40, and 60 mm/min), and three distinct tool pin geometry (cylindrical, threaded cylindrical, and square), respectively. Besides, unreinforced and reinforced weldments were analyzed for mechanical properties like tensile strength and microhardness. Microstructural characterization was also carried out using FESEM and XRD techniques. The findings concluded that the reinforced samples welded using a cylindrical tool and double-pass strategy showcased homogenous distribution of nanoparticles with grain refinement, thereby exhibiting improved strength and hardness.

2021 ◽  
Vol 22 (2) ◽  
pp. 352-363
Author(s):  
Stephen Leon Joseph Leon ◽  
Alfred Franklin Varghese ◽  
Joseph Michel ◽  
Gopinath Gunasekaran

Frictional heat generation in the tool/matrix interface followed by the stirring of material along the weld line causes plasticized solid state joining in friction stir welding. In this paper, the existing torque based thermo-mechanical model for the tools with cylindrical pins is remodified for the polygonal tool pin profile by introducing novel multiplication factors with respect to the number of sides in the tool pin geometry. The variation in the effective heat supply with respect to the chosen pin geometry was analyzed. A comparative analysis of the proposed analytical model with the existing model was also carried out to understand the accuracy of the proposed model.  Furthermore, a transient thermal numerical modelling was carried out in the view of understanding the change in process peak temperature in the stir zone and change in temperature gradient along the heat affected zone with respect to the change in pin geometry for the opted set of process input parameters. An analytically estimated heat-input-based numerical model was adopted in the present study. It was observed that the process peak temperature was directly proportional to the number of sides in the tool pin. ABSTRAK: Penjanaan haba geseran antara muka pada alat/matrik diikuti dengan pengacauan material sepanjang garis kimpalan menyebabkan keadaan plastik pepejal melekat bersama geseran kimpalan pengacau. Kajian ini berkaitan tork sedia ada berdasarkan model mekanikal-terma bagi alat pin silinder yang terubah suai bagi profil pin alat poligon dengan memperkenalkan faktor gandaan berdasarkan bilangan sisi geometri alat pin. Perubahan pada bekalan haba efektif berdasarkan geometri pin pilihan telah dikaji. Analisis bandingan pada model analitik yang dicadang bersama model sedia ada, telah dilakukan bagi memahami ketepatan model cadangan. Tambahan, model transien numerikal terma telah dibuat bagi memahami proses perubahan suhu puncak ketika zon pengacauan dan perubahan gradien suhu sepanjang zon terkena haba perubahan geometri pin pada set proses parameter input terpilih. Kajian ini mengaplikasi model numerik berdasarkan input anggaran haba secara analitik. Dapatan kajian menunjukkan suhu puncak proses adalah berkadar langsung dengan bilangan sisi pin alat.


2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


2011 ◽  
Vol 415-417 ◽  
pp. 1140-1146 ◽  
Author(s):  
R. Palanivel ◽  
P. Koshy Mathews ◽  
M. Balakrishnan ◽  
I. Dinaharan ◽  
N. Murugan

Aluminium alloys generally has low weldability by traditional fusion welding process. The development of the Friction Stir Welding (FSW) has provided an alternative improved way of producing aluminium joints, in a faster and reliable manner. FSW process has several advantages, in particular the possibility to weld dissimilar aluminium alloys. This study focuses on the behavior of tensile strength of dissimilar joints of AA6351-T6 alloy to AA5083-H111 alloy produced by friction stir welding was analysed. Five different tool pin profile such as Straight Square (SS), Tapered Square (TS), Straight Hexagon (SH), Straight Octagon (SO) and Tapered Octagon (TO) with three different axial force (1tonne, 1.5tonne, 2 tonne) have been used to weld the joints. The effect of pin profiles and axial force on tensile properties and material flow behaviour of the joint was analyzed and it was found that the straight square pin profile with 1.5 tonne produced better tensile strength then other tool pin profile and axial force.


2012 ◽  
Vol 445 ◽  
pp. 789-794 ◽  
Author(s):  
Vahid Moosabeiki ◽  
Ghasem Azimi ◽  
Mostafa Ghayoor

Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the weld quality. Friction stir tool plays a major role in friction stir welding process. In this investigation, it is tried to evaluate the effect of tool pin thread and tool shoulder curvature on FSW zone formation in AA6061 aluminium alloy. In this regard, six different tool pin geometries (threadless triangular pin with/without conical shoulder, threaded triangular pin with conical shoulder, threadless square pin with/without conical shoulder, threaded square pin with conical shoulder) are used to fabricate the joints. The formation of FSP zones are analyzed macroscopically. Tensile properties of the joints are evaluated and correlated with the FSP zone formation. Consequently, it is obtained that welding creates a higher quality compared to other tool pin profiles using the square tool with curved shoulder and having threaded pin.


2003 ◽  
Vol 125 (03) ◽  
pp. D10-D16 ◽  
Author(s):  
Matt Hansen

This article provides details of a low-temperature joining technology called friction stir welding. Friction stir welding (FSW) uses a cylindrical, shouldered tool with a profiled pin that is rotated and slowly plunged into the joint line between two pieces of sheet or plate material. According to an engineer, stir welding eliminated 60 percent of the rivets that the plane would have otherwise required. Eclipse Aviation Corp., Albuquerque, NM, is building a separate plant to house its stir welding operations for commercial production, once its plane receives certification by the US Federal Aviation Administration. FSW is a solid-state process, more like forging and extruding than to fusion welding. Since the process is solid state, the joint is not subject to any shrinkage because of phase changes. The process also introduces minimal heat into the weld, so the heat-affected zone is relatively small in comparison to arc welding.


2021 ◽  
Vol 49 (1) ◽  
pp. 78-86
Author(s):  
Stephen Leon ◽  
G. Bharathiraja ◽  
V. Jayakumar

In friction stir welding, lesser tool life restricts the usage of non-circular pin in friction stir welding tool eventhough it delivers comparatively better weld joints than circular pin. Process peak temperature during the process affects the shear strength of the flowing material around the tool pin. Maintaining the process peak temperature as low as possible improves the properties in heat affected zone but on the other hand it increases the stress on the tool pin.Especially on the usage of non-circular pin, the pin surface experiences uneven stress distribution and causes premature tool failure. In this paper, optimum thermal environment through proper selection of process parameters and dwell period with respect to the pin geometry are analysed. A comparative analysis is also made to understand the impact of increase in flat surfaces in the pin surface on weld quality in the view of developing a suitable thermal environment that can improve tool life without compromising joint strength. Apart from this, optimum dwell period for the chosen tool pin geometry is analysed based on the empirical softening temperature of the material.


2021 ◽  
Vol 40 ◽  
pp. 1-11
Author(s):  
Gagandeep Singh ◽  
Khushdeep Goyal ◽  
Baljinder Ram ◽  
Bal Krishan

In this research paper, two different metal plates of aluminum alloy viz. AA6061 and AA6101 were welded with friction stir welding process. Round tool and square tool pin profiles were used to weld the alloys. Weld microstructures, hardness, and tensile properties were evaluated in as-welded condition. The tensile strength of the joints fabricated with round tool pin profile were lower than the square tool pin profile because of the pulsating effect, in square tool pin profile this effect was produced along with the higher frictional forces. The micro-hardness of friction stir zone was higher than the base material due to active recrystallization occurrence which resulted in fine grain size in case of weld joint with round pin profile. Microstructure indicated uniformly distribution of materials with minimum heat affected zone and dense welded zone without any defects.


2014 ◽  
Vol 592-594 ◽  
pp. 499-503
Author(s):  
L. Suvarna Raju ◽  
A. Kumar ◽  
S. Rajendra Prasad

Abstract. Conventional welding of copper and its alloys tends to degrade the mechanical strength at the welded area due to high thermal diffusivity and melting point. Friction stir welding (FSW) is an excellent alternative for joining of these materials against fusion joining. FSW is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The main objective of this investigation is to use FSW for joining of 3 mm thick copper sheet using taper cylindrical tool pin profile. The defect free welds were obtained at a tool rotational speed of 900rpm and 1120 rpm and traverse speeds of 25, 31.5, 40 and 50 mm/min respectively. Mechanical and microstructure analysis has been performed to evaluate the characteristics of friction stir welded copper. From the investigation it is found that the joints fabricated at a tool rotation speed of 900 rpm and traverse speed of 40mm/min resulted in better mechanical properties compared to other tool rotation and traverse speeds. The tensile properties of all the weld joints showed a relative correspondence to the variation of the hardness in the weld zone. The observed results were correlated with the microstructure and fracture features.


Author(s):  
William R Longhurst ◽  
Isaac C Wilbur ◽  
Brandon E Osborne ◽  
Bryan W Gaither

Friction stir welding is a solid-state process that is gaining preference for the joining of metals with low melting points. Despite the clear advantages of friction stir welding over traditional fusion welding, voids within the weld seam arise when improper conditions are present. The work presented in this article examines the development of an automated process monitoring system for friction stir welding. The system indirectly monitors the welding torque through the supplied current to the spindle motor. To measure the current, a clamp-on current meter was used. Our results have shown that using a simple and inexpensive clamp-on current meter provides good insight into the welding torque. Examination focused on the frequency spectrum of the current. A Fourier transform decomposed the signal into various frequencies present. The results consistently showed that when no void was present, there was a component of the current’s frequency at 14 Hz. However, when the tool encountered a void, the frequency spectrum changed. The component at 14 Hz went away while content in the range of 1–4 Hz increased.


Sign in / Sign up

Export Citation Format

Share Document