scholarly journals The Leaf Extract of Coccinia grandis (L.) Voigt Accelerated In Vitro Wound Healing by Reducing Oxidative Stress Injury

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Poommaree Namchaiw ◽  
Yamaratee Jaisin ◽  
Cholticha Niwaspragrit ◽  
Kittiya Malaniyom ◽  
Anyamanee Auvuchanon ◽  
...  

The impairment in the regulation of the physiological process in the inflammatory phase of wound healing results in oxidative stress damage, which increases the severity and extends the healing time. In this study, we aimed to evaluate the radical scavenging properties of Coccinia leaf extract and its ability to ameliorate a migration process in vitro. Coccinia is a medicinal plant that was used in ancient times for relieving insect bite itching and swelling. However, the role of Coccinia leaf extract as an antioxidant related to the process of wound healing has never been studied. In this study, we demonstrated that the leaf extract possessed antioxidant properties that acted as a proton donor to neutralize reactive oxygen species with the IC50 value of 4.85 mg/mL of the extract. It could chelate iron with the IC50 value of 21.39 mg/mL of the extract. The leaf extract protected the human fibroblasts and keratinocytes from hydrogen peroxide-induced oxidative stress by increasing cell survival rate by more than 20% in all test doses. The protective property was dose-dependently correlated with the decrease in reactive oxygen species formation. In addition, the leaf extract enhanced the cell migration rate of fibroblasts and keratinocytes up to 23% compared with vehicle control. The results suggested that Coccinia leaf extract may be a potential herb for increasing the wound healing process with its antioxidant capacity and can be used as an herbal ingredient for the utilization of skincare products.

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Yin-Yin Chen ◽  
Han Hong ◽  
Yu-Ting Lei ◽  
Jia Zou ◽  
Yi-Ya Yang ◽  
...  

Abstract Background Obesity-related nephropathy (ORN) has become one of the leading causes of end-stage renal disease and has tripled over the past decade. Previous studies have demonstrated that decreased reactive oxygen species production may contribute to improving ORN by ameliorating oxidative stress injury. Here, IκB kinase (IKK) was hypothesized to inactivate the deubiquitination activity of cylindromatosis (CYLD) by activating the phosphorylation of CYLD, thus promoting the ubiquitination of NF-E2-related factor 2 (Nrf2) and further aggravating oxidative stress injury of the kidney in ORN. This study was aimed to confirm this hypothesis. Methods Haematoxylin and eosin (HE), periodic acid-Schiff (PAS) and Oil Red O staining were performed to assess histopathology. Dihydroethidium (DHE) staining and MDA, SOD, CAT, and GSH-PX assessments were performed to measure reactive oxygen species (ROS) production. Immunohistochemical (IHC) staining, qRT–PCR and/or western blotting were performed to assess the expression of related genes. JC-1 assays were used to measure the mitochondrial membrane potential (ΔΨm) of treated HK-2 cells. Co-immunoprecipitation experiments (Co-IP) were used to analyse the interaction between CYLD and Nrf2 in ORN. Results ORN in vivo and in vitro models were successfully constructed, and oxidative stress injury was detected in the model tissues and cells. Compared with the control groups, the phosphorylation level of CYLD increased while Nrf2 levels decreased in ORN model cells. An IKK inhibitor reduced lipid deposition, ROS production, CYLD phosphorylation levels and ΔΨm in vitro, which were reversed by knockdown of CYLD. Nrf2 directly bound to CYLD and was ubiquitinated in ORN cells. The proteasome inhibitor MG132 activated the Nrf2/ARE signalling pathway, thereby reversing the promoting effect of CYLD knockdown on oxidative stress. Conclusion IKK inactivates the deubiquitination activity of CYLD by activating the phosphorylation of CYLD, thus promoting the ubiquitination of Nrf2 and further aggravating oxidative stress injury of the kidney in ORN. This observation provided a feasible basis for the treatment of kidney damage caused by ORN.


2022 ◽  
Vol 11 (2) ◽  
pp. 301
Author(s):  
Neeraja Purandare ◽  
Katherine J. Kramer ◽  
Paige Minchella ◽  
Sarah Ottum ◽  
Christopher Walker ◽  
...  

Adhesions frequently occur postoperatively, causing morbidity. In this noninterventional observational cohort study, we enrolled patients who presented for repeat abdominal surgery, after a history of previous abdominal myomectomy, from March 1998 to June 20210 at St. Vincent’s Catholic Medical Centers. The primary outcome of this pilot study was to compare adhesion rates, extent, and severity in patients who were treated with intraperitoneal triamcinolone acetonide during the initial abdominal myomectomy (n = 31) with those who did not receive any antiadhesion interventions (n = 21), as documented on retrospective chart review. Adhesions were blindly scored using a standard scoring system. About 32% of patients were found to have adhesions in the triamcinolone group compared to 71% in the untreated group (p < 0.01). Compared to controls, adhesions were significantly less in number (0.71 vs. 2.09, p < 0.005), severity (0.54 vs. 1.38, p < 0.004), and extent (0.45 vs. 1.28, p < 0.003). To understand the molecular mechanisms, human fibroblasts were incubated in hypoxic conditions and treated with triamcinolone or vehicle. In vitro studies showed that triamcinolone directly prevents the surge of reactive oxygen species triggered by 2% hypoxia and prevents the increase in TGF-β1 that leads to the irreversible conversion of fibroblasts to an adhesion phenotype. Triamcinolone prevents the increase in reactive oxygen species through alterations in mitochondrial function that are HIF-1α-independent. Controlling mitochondrial function may thus allow for adhesion-free surgery and reduced postoperative complications.


2012 ◽  
Vol 23 (18) ◽  
pp. 3582-3590 ◽  
Author(s):  
Alawiah Alhebshi ◽  
Theodora C. Sideri ◽  
Sara L. Holland ◽  
Simon V. Avery

Oxidative stress mediated by reactive oxygen species (ROS) is linked to degenerative conditions in humans and damage to an array of cellular components. However, it is unclear which molecular target(s) may be the primary “Achilles’ heel” of organisms, accounting for the inhibitory action of ROS. Rli1p (ABCE1) is an essential and highly conserved protein of eukaryotes and archaea that requires notoriously ROS-labile cofactors (Fe-S clusters) for its functions in protein synthesis. In this study, we tested the hypothesis that ROS toxicity is caused by Rli1p dysfunction. In addition to being essential, Rli1p activity (in nuclear ribosomal-subunit export) was shown to be impaired by mild oxidative stress in yeast. Furthermore, prooxidant resistance was decreased by RLI1 repression and increased by RLI1 overexpression. This Rlip1 dependency was abolished during anaerobicity and accentuated in cells expressing a FeS cluster–defective Rli1p construct. The protein's FeS clusters appeared ROS labile during in vitro incubations, but less so in vivo. Instead, it was primarily55FeS-cluster supply to Rli1p that was defective in prooxidant-exposed cells. The data indicate that, owing to its essential nature but dependency on ROS-labile FeS clusters, Rli1p function is a primary target of ROS action. Such insight could help inform new approaches for combating oxidative stress–related disease.


Author(s):  
Mariachiara Buccarelli ◽  
Quintino Giorgio D’Alessandris ◽  
Paola Matarrese ◽  
Cristiana Mollinari ◽  
Michele Signore ◽  
...  

Abstract Background Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor in adults, characterized by a poor prognosis mainly due to recurrence and therapeutic resistance. It has been widely demonstrated that glioblastoma stem-like cells (GSCs), a subpopulation of tumor cells endowed with stem-like properties is responsible for tumor maintenance and progression. Moreover, it has been demonstrated that GSCs contribute to GBM-associated neovascularization processes, through different mechanisms including the transdifferentiation into GSC-derived endothelial cells (GdECs). Methods In order to identify druggable cancer-related pathways in GBM, we assessed the effect of a selection of 349 compounds on both GSCs and GdECs and we selected elesclomol (STA-4783) as the most effective agent in inducing cell death on both GSC and GdEC lines tested. Results Elesclomol has been already described to be a potent oxidative stress inducer. In depth investigation of the molecular mechanisms underlying GSC and GdEC response to elesclomol, confirmed that this compound induces a strong increase in mitochondrial reactive oxygen species (ROS) in both GSCs and GdECs ultimately leading to a non-apoptotic copper-dependent cell death. Moreover, combined in vitro treatment with elesclomol and the alkylating agent temozolomide (TMZ) enhanced the cytotoxicity compared to TMZ alone. Finally, we used our experimental model of mouse brain xenografts to test the combination of elesclomol and TMZ and confirmed their efficacy in vivo. Conclusions Our results support further evaluation of therapeutics targeting oxidative stress such as elesclomol with the aim of satisfying the high unmet medical need in the management of GBM.


Author(s):  
P. Engel ◽  
M. Ranieri ◽  
O. Felthaus ◽  
S. Geis ◽  
F. Haubner ◽  
...  

BACKGROUND: A key moderator of wound healing is oxygen. Wound healing is a dynamic and carefully orchestrated process involving blood cells, cytokines, parenchymal cells (i.e. fibroblasts and mesenchymal stem cells) and extracellular matrix reorganization. Human adipose derived stem cells as well as human fibroblasts produce soluble factors, exhibit diverse effects on inflammation and anti inflammation response and are involved in wound healing processes. Hyperbaric oxygen therapy is an effective adjunct treatment for ischemic disorders such as chronic infection or chronic wounds. In vitro effects of hyperbaric oxygen therapy on human cells were presented in many studies except for those on mono- and co-cultures of human adipose derived stem cells and fibroblasts. OBJECTIVE: The aim of this study was to investigate the effects of hyperbaric oxygen therapy on mono- and co-cultures of human adipose derived stem cells and fibroblasts. METHODS: Mono- and co-cultures from human adipose derived stem cells and fibroblasts were established. These cultures were exposed to hyperbaric oxygen therapy every 24 h for five consecutive days. Measuring experiments were performed on the first, third and fifth day. Therapy effects on the expression of VEGF, IL 6 and reactive oxygen species were investigated. RESULTS: After exposure to hyperbaric oxygen, cell culturess showed a significant increase in the expression of VEGF after 3 and 5 days. All cultures showed significantly reduced formation of reactive oxygen species throughout the experiments. The expression of IL-6 decreased during the experiment in mono-cultures of human adipose derived stem cells and co-cultures. In contrast, mono-cultures of human skin fibroblasts showed an overall significantly increased expression of IL-6. CONCLUSIONS: Hyperbaric oxygen therapy leads to immunmodulatory and proangiogenetic effects in a wound-like enviroment of adipose derived stem cells and fibroblasts.


Author(s):  
Archana V ◽  
Indumathy R

Objective: The aim of this study is to evaluate the protective effect of Delonix elata (L.) leaf extract against doxorubicin-induced cardiotoxicity in H9c2 cells. Methods: Doxorubicin has been used to treat cancer, but its clinical uses are limited because of its dose-dependent cardiotoxicity. Reactive oxygen species play an important role in the pathological process of cardiotoxicity. The various extracts (pet.ether, ethyl acetate and ethanol) of Delonix elata leaves antioxidant property was evaluated by SOD antioxidant assay and DPPH free radical scavenging assay. The cells were incubated with different concentrations of various extracts of Delonix elata leaves for 2 hr, followed by incubation with 5µM doxorubicin for 24 hr. Cell viability was determined by using MTT assay, respectively. Results: The various extracts of Delonix elata leaves exhibits antioxidant activity. The Doxorubicin significantly decreased cell viability which was accompanied by an increased ROS production. Pre-treatment with various extracts of Delonix elata leaves increased the viability ofcells and inhibit the generation of reactive oxygen species. Conclusion: In this study, findings how that Delonix elata leaf extract exhibited a protective effect against oxidative stress-induced cardiomyocyte damage. The ethanolic extract of Delonix elata leaves possesses significant antioxidant and cardioprotective activity.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sonia Gandhi ◽  
Andrey Y. Abramov

Biological tissues require oxygen to meet their energetic demands. However, the consumption of oxygen also results in the generation of free radicals that may have damaging effects on cells. The brain is particularly vulnerable to the effects of reactive oxygen species due to its high demand for oxygen, and its abundance of highly peroxidisable substrates. Oxidative stress is caused by an imbalance in the redox state of the cell, either by overproduction of reactive oxygen species, or by dysfunction of the antioxidant systems. Oxidative stress has been detected in a range of neurodegenerative disease, and emerging evidence from in vitro and in vivo disease models suggests that oxidative stress may play a role in disease pathogenesis. However, the promise of antioxidants as novel therapies for neurodegenerative diseases has not been borne out in clinical studies. In this review, we critically assess the hypothesis that oxidative stress is a crucial player in common neurodegenerative disease and discuss the source of free radicals in such diseases. Furthermore, we examine the issues surrounding the failure to translate this hypothesis into an effective clinical treatment.


Sign in / Sign up

Export Citation Format

Share Document