scholarly journals Genesis of the Bieyesamas Monzogranite of the Altay Mountain, Xinjiang, Northwestern China, and Its Rare Metal Resource Potential

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Gengbiao Qiao ◽  
Xiaoyan Chen ◽  
Wenming Li

Lying in the Altay Orogenic Belt in Xinjiang, Northwestern China, the Bieyesamas monzogranite pluton is located in the North Altay Terrane. It is one of the important granitic batholiths with a large amount of rare metal pegmatite dikes. According to LA-ICP-MS zircon U-Pb isotopic dating, the 206Pb/238U weighted average age of the Bieyesamas monzogranite is 451.1 ± 5.1  Ma ( MSWD = 6.0 ), indicating the formation age of Late Ordovician. The Bieyesamas monzogranite has secondary minerals such as garnet and tourmaline. The geochemical analysis shows that the pluton is characterized by high SiO2 (70.45%~75.44%), Al2O3 (14. 04%~17.14%), potassium and alkaline ( K 2 O = 4.20 % ~ 4.78 % , N a 2 O + K 2 O = 7.90 % ~ 8.99 % ), A/CNK (1.16~1.28), and high corundum (2.33%~5.08%) being found in CIPW standard minerals, belonging to high-K calc-alkaline peraluminous series. The pluton is enriched in LREE, depleted in HREE ( LREE / HREE = 5.99 ~ 9.65 ), with obviously negative Eu anomaly ( δ Eu = 0.44 ~ 0.60 ), while the trace elements are characterized by Rb, K, Nb, Ta, Hf, and U enrichment and Ba, Sr, Ti, and Zr depletion, as well as with high differentiation index ( DI = 93.24 % ). Zircon ε Hf t values range from 2.89 to 7.69, with the corresponding two-stage model ages ( T DM 2 ) of 941~1257 Ma. The mineral assemblage, geochemical characteristics, and zircon Hf isotope indicate the pluton experienced the highly fractionated process and belongs to highly fractionated S-type granite, which was formed by partial melting of the Meso- to Neoproterozoic crustal material. In the Bieyesamas monzogranite, the average contents of rare metals are obviously higher ( Li = 550 × 10 − 6 , Be = 10.18 × 10 − 6 , Nb = 18.91 × 10 − 6 , Ta = 2.14 × 10 − 6 , Rb = 500 × 10 − 6 , and Cs = 149.9 × 10 − 6 ) than the other rocks and Clark values of crust, which indicates that the Bieyesamas pluton has the enrichment potential of rare metals. The metallogenic geological conditions are superior in the Bieyesamas area of the Altay Mountain, and rare metal deposits and ore spots are widely distributed. In particular, the newly discovered rare metal deposits are characterized by large-scale mineralization, high grade and industrial utilization value, etc. It is preliminarily predicted that they have reached the medium-scale deposits. Therefore, the Bieyesamas area is one of the key areas for rare metal prospecting breakthroughs in the future, with great potential for rare metal mineral resources.


2013 ◽  
Vol 807-809 ◽  
pp. 2163-2169
Author(s):  
Guo Qiang Chen ◽  
Lai Jun Lu ◽  
Meng Xue Cao

Abnormal analysis of geochemical elements is a significant link in the mineral resources prediction. Element anomaly often directly or indirectly reflects the existence of mineralization anomaly. Due to the polyphyleticism of the metallogenic material and ore-forming process is characterized by multiple stages. there are two type of the metallogenic elements ,i.e., main ore-forming elements and associated elements. Therefore, it presents different assemblage characteristics in the spatial distribution, which also exist in the abnormal distribution. The spatial distribution mechanism of the combination elements are relate to geological conditions and the property of the elements. Based on the geochemical and transport theory, we explore the space quantitative anomaly seeking model. Then we proposed a new method - source tracing analysis for the inference of ore-caused anomaly from the combination anomaly, and the criteria of the proposed method is given. It can realize the intelligent search of the middle-large scale mineral resources prediction target effectively.



2019 ◽  
Vol 58 ◽  
pp. 97-103
Author(s):  
Shashi Tamang ◽  
Sandeep Thapa ◽  
Kabi Raj Paudyal ◽  
Frédéric Girault ◽  
Frédéric Perrier

Geological study was carried out along the Khudi-Bahundanda area of the Marshyangdi Valley in the west central Nepal. The area lies partly in the Main Central Thrust (MCT) zone and partly in the Higher Himalayan Crystalline Zone. The aim of the study was to prepare a detail geological map and cross section in the scale of 1:25,000 to work out on stratigraphy, metamorphism and mineral resource potential of the area. The rocks of the Higher Himalaya have been mapped under a single unit as Formation I. This unit consists of kyanite-garnet para-gneiss. The lithological units of the MCT zone are mapped into three units as the Benighat Slate, the Malekhu Formation and the Robang Formation from the bottom to the top, respectively. The Benighat Slate consists of dark grey to black schist with some carbonate beds as members. The Malekhu Formation consists of creamy white siliceous dolomite marble with parting of schist. The Robang Formation comprises of light grey psammitic schist with garnet and white micaceous quartzite in various proportion. Many secondary structures are observed in the study area, but primary structures are missing due to extreme metamorphism. The large-scale structures are the MCT, which separates the Lesser Himalayan rocks to the south from the Higher Himalaya to the north, and the Bahundanda Thrust (BT). Numerous outcrop-scale structures like meso-scale folds, quartz veins, boudinage and ptygmatic folds are abundant. Folds in the MCT zone are mostly E-W trending, and rocks have experienced multiple metamorphism and dynamic crystallization of minerals. The Lesser Himalayan rocks resemble the garnet zone while the Higher Himalayan rocks resemble to the kyanite grade of metamorphism. As in the other sections of the Himalaya, the present section also clearly shows the inverted metamorphism in the MCT zone. The MCT zone is considered as the potential site for precious and semi-precious stones, of which the most potential ones are the garnet and kyanite.



Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 280 ◽  
Author(s):  
Peng Li ◽  
Jiankang Li ◽  
I-Ming Chou ◽  
Denghong Wang ◽  
Xin Xiong

Granitic pegmatite deposits, which are usually products of orogenic processes during plate convergence, can be used to demonstrate regional tectonic evolution processes. In the eastern Tibetan Plateau in China, the Jiajika, Dahongliutan, Xuebaoding, Zhawulong, and Ke’eryin rare metal pegmatite deposits are located in the southern, western, northern, midwestern, and central areas of the Songpan–Ganzê orogenic belt, respectively. In this study, we dated two muscovite Ar–Ar ages of 189.4 ± 1.1 Ma and 187.0 ± 1.1 Ma from spodumene pegmatites of the Dahongliutan deposit. We also dated one zircon U-Pb age of 211.6 ± 5.2 Ma from muscovite granite, two muscovite Ar–Ar ages of 179.6 ± 1.0 Ma and 174.3 ± 0.9 Ma, and one columbite–tantalite U-Pb age of 204.5 ± 1.8 Ma from spodumene pegmatites of the Zhawulong deposit. In addition, we dated one muscovite Ar–Ar age of 159.0 ± 1.4 Ma from spodumene pegmatite of the Ke’eryin deposit. Combining these ages and previous studies in chronology, we concluded that the granitic magma in the Jiajika, Xuebaoding, Dahongliutan, Zhawulong, and Ke’eryin deposits intruded into Triassic metaturbidites at approximately 223, 221, 220–217, 212, and 207–205 Ma, respectively, and that the crystallization of the corresponding pegmatite ceased at approximately 199–196, 195–190, 189–187, 180–174, and 159 Ma, respectively. In this study, we demonstrated that the peak in magmatic activity and the final crystallization age of the pegmatite lagged behind one another from the outer areas of the orogeny belt to the inner areas. The pegmatite–parented granitic magmas were sourced from Triassic metaturbidites that were melted by shear heating along the large-scale decollement resulting from Indosinian collisions along the North China block, Qiangtang–Changdu block, and Yangtze block. As a result, the above temporal and spatial regularities indicated that the tectonic–thermal stress resulting from the collisions of three blocks was transferred from the outer areas of the orogenic belt to the inner areas. A large amount of heat and a slow cooling rate at the convergent center of thermal stress in two directions will lead to crystallization and differentiation of magma in the Songpan–Ganzê orogenic belt, forming additional rare metal deposits.



Author(s):  
I.V. Abaturova ◽  
◽  
L.A. Storozhenko ◽  
E.D. Nugmanova ◽  
V.S. Kozlov ◽  
...  

The development of mineral deposits has strong transformative effect on the geological environment. At the same time, all the components of geotechnical conditions (relief, structure of rock massifs, hydrogeological and geocryological conditions etc.), formed over a long geological time, are actively changing. Geological processes are activated and new mining-geological processes are formed. New strata are formed on the Earth's surface along with the technogenic formations and technogenic deposits. Today, the scale of technogenesis in mining is comparable to the results of geological activities that have been going on for many millions of years. The reaction of the geological environment is immediate and is expressed in the development of large-scale engineering and geological processes, which often do not allow the further development of mineral resources and threaten the human life. Therefore, even at the early stages of prospecting and/or exploration, it is necessary to understand the dynamics of changes in surrounding medium in order to develop methods for proper managing of the ore extraction. By the example of a number of objects, all the stages of study of engineering-geological conditions are considered, the dynamics of their change, which led to the formation of engineering-geological processes affecting the further development of mineral resource, is estimated.



Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 253
Author(s):  
Boris A. D’yachkov ◽  
Ainel Y. Bissatova ◽  
Marina A. Mizernaya ◽  
Sergey V. Khromykh ◽  
Tatiana A. Oitseva ◽  
...  

Replenishment of mineral resources, especially gold and rare metals, is critical for progress in the mining and metallurgical industry of Eastern Kazakhstan. To substantiate the scientific background for mineral exploration, we study microinclusions in minerals from gold and rare-metal fields, as well as trace-element patterns in ores and their hosts that may mark gold and rare-metal mineralization. The revealed compositions of gold-bearing sulfide ores and a number of typical minerals (magnetite, goethite, arsenopyrite, antimonite, gold and silver) and elements (Fe, Mn, Cu, Pb, Zn, As, and Sb) can serve as exploration guides. The analyzed samples contain rare micrometer lead (alamosite, kentrolite, melanotekite, cotunnite) and nickel (bunsenite, trevorite, gersdorffite) phases and accessory cassiterite, wolframite, scheelite, and microlite. The ores bear native gold (with Ag and Pt impurities) amenable to concentration by gravity and flotation methods. Multistage rare-metal pegmatite mineralization can be predicted from the presence of mineral assemblages including cleavelandite, muscovite, lepidolite, spodumene, pollucite, tantalite, microlite, etc. and such elements as Ta, Nb, Be, Li, Cs, and Sn. Pegmatite veins bear diverse Ta minerals (columbite, tantalite-columbite, manganotantalite, ixiolite, and microlite) that accumulated rare metals late during the evolution of the pegmatite magmatic system. The discovered mineralogical and geochemical criteria are useful for exploration purposes.



2018 ◽  
pp. 1-34
Author(s):  
Andrew Jackson

One scenario put forward by researchers, political commentators and journalists for the collapse of North Korea has been a People’s Power (or popular) rebellion. This paper analyses why no popular rebellion has occurred in the DPRK under Kim Jong Un. It challenges the assumption that popular rebellion would happen because of widespread anger caused by a greater awareness of superior economic conditions outside the DPRK. Using Jack Goldstone’s theoretical expla-nations for the outbreak of popular rebellion, and comparisons with the 1989 Romanian and 2010–11 Tunisian transitions, this paper argues that marketi-zation has led to a loosening of state ideological control and to an influx of infor-mation about conditions in the outside world. However, unlike the Tunisian transitions—in which a new information context shaped by social media, the Al-Jazeera network and an experience of protest helped create a sense of pan-Arab solidarity amongst Tunisians resisting their government—there has been no similar ideology unifying North Koreans against their regime. There is evidence of discontent in market unrest in the DPRK, although protests between 2011 and the present have mostly been in defense of the right of people to support themselves through private trade. North Koreans believe this right has been guaranteed, or at least tacitly condoned, by the Kim Jong Un government. There has not been any large-scale explosion of popular anger because the state has not attempted to crush market activities outright under Kim Jong Un. There are other reasons why no popular rebellion has occurred in the North. Unlike Tunisia, the DPRK lacks a dissident political elite capable of leading an opposition movement, and unlike Romania, the DPRK authorities have shown some flexibility in their anti-dissent strategies, taking a more tolerant approach to protests against economic issues. Reduced levels of violence during periods of unrest and an effective system of information control may have helped restrict the expansion of unrest beyond rural areas.



On the basis of engineering and design surveys of the building, engineering-geological and geophysical studies of the soils of the territory conducted by the article authors, as well as with due regard for the results of studies conducted on this territory by other authors, the features of the foundations, soils of their foundation and engineering-geological conditions of the territory of the Melnikov House are established. It is shown that the Melnikov house is located under complex engineering-geological conditions on the territory of high geological risk, in the zone of influence of tectonic disturbance. To the North of the area there is a zone of intersection of the observed disturbance with a larger disturbance that can have an impact on geological processes. To the North-East of the site of the Melnikov House, a sharp immersion of the roof of carbon deposits was revealed. It promotes groundwater seepage into limestone of the carbonate strata from overlying water-bearing sands and activation of processes of suffusion removal and sinkhole phenomena of the soil. The surveyed area is assessed as potentially karst-hazardous and adjacent to it from the North-East territory as karst-dangerous. In this regard any construction on the adjacent territory can provoke activation of sinkhole phenomena on the surface. The foundations of the building are basically in working condition. Existing defects can be eliminated during repair. The foundation soils mainly have sufficient bearing capacity. Areas of the base with bulk soil can be reinforced. However, when developing a project for the reconstruction of the building and its territory, it should be taken into account that the design of the Melnikov House does not provide for its operation on the loads at the formation of sinkholes.



The key aspects of the process of designing and developing an information and cartographic control tool with business analytics functions for the municipal level of urban management are considered. The review of functionality of the developed tool is given. Examples of its use for the analysis and monitoring of implementation of the program of complex development of territories are given. The importance of application of information support of management and coordination at all levels of management as an integral part of the basic model of management and coordination system of large-scale urban projects of dispersed construction is proved. Information and map-made tool with business intelligence functions was used and was highly appreciated in the preparation of information-analytical and presentation materials of the North-Eastern Administrative District of Moscow. Its use made it possible to significantly optimize the list of activities of the program of integrated development of territories, their priority and timing.



Sign in / Sign up

Export Citation Format

Share Document