scholarly journals CircRNA ANXA2 Promotes Lung Cancer Proliferation and Metastasis by Upregulating PDPK1 Expression

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yan Ju ◽  
Bin Yuan ◽  
Wenan Wu ◽  
Jin Zhao ◽  
Xiaorui Shi

Lung cancer is a common malignant tumor that seriously threatens human health. It has become the top malignant tumor in terms of morbidity and mortality. In recent years, circRNA, a special noncoding RNA molecule, has attracted considerable interest. This study focused on the role of circRNA ANXA2 (circANXA2) in lung cancer and the molecular mechanism of cancer promotion. Real-time quantitative PCR (RT-PCR) was used in detecting the expression abundance of circANXA2 in different lung cancer cells and tissues. The subcellular localization of circANXA2 was detected through fluorescence in situ hybridization. circANXA2 expression was knocked down through siRNA. CCK-8, clone formation assay, and TUNEL assay were used in evaluating the effects of circANXA2 on cell proliferation, clone formation ability, and apoptosis. The role of circANXA2 in tumor proliferation was further verified in vivo using the tumor transplantation model in nude mice. The molecular mechanism of circANXA2 was investigated with luciferase activity assay and RT-PCR. The expression abundance of circANXA2 is high in lung cancer cell lines and tissues. Knocking down of circANXA2 inhibits the proliferation and clonogenesis of the lung cancer cells. Knocking down circANXA2 promotes apoptosis. circANXA2 further affects downstream PDPK1 expression by regulating miR-33a-5p and thereby affecting the malignancy of the lung cancer cells. circANXA2 inhibits miR-33a-5p activity by directly interacting with miR-33a-5p. circANXA2 regulates the transcription of the miR-33a-5p downstream target gene PDPK1 and affects the malignant progression of lung cancer.

2019 ◽  
Vol 97 (6) ◽  
pp. 767-776 ◽  
Author(s):  
Yufu Tang ◽  
Lijian Wu ◽  
Mingjing Zhao ◽  
Guangdan Zhao ◽  
Shitao Mao ◽  
...  

Long noncoding RNA small nucleolar RNA host gene 4 (SNHG4) is usually up-regulated in cancer and regulates the malignant behavior of cancer cells. However, its role in lung cancer remains elusive. In this study, we silenced the expression of SNHG4 in NCI-H1437 and SK-MES-1, two representative non-small-cell lung cancer cell lines, by transfecting them with siRNA (small interfering RNA) that specifically targets SNHG4. We observed significantly inhibited cell proliferation in vitro and reduced tumor growth in vivo after SNHG4 silencing. SNHG4 knockdown also led to cell cycle arrest at the G1 phase, accompanied with down-regulation of cyclin-dependent kinases CDK4 and CDK6. The migration and invasiveness of these two cell lines were remarkably inhibited after SNHG4 silencing. Moreover, our study revealed that the epithelial–mesenchymal transition (EMT) of lung cancer cells was suppressed by SNHG4 silencing, as evidenced by up-regulated E-cadherin and down-regulated SALL4, Twist, and vimentin. In addition, we found that SNHG4 silencing induced up-regulation of miR-98-5p. MiR-98-5p inhibition abrogated the effect of SNHG4 silencing on proliferation and invasion of lung cancer cells. In conclusion, our findings demonstrate that SNHG4 is required by lung cancer cells to maintain malignant phenotype. SNHG4 probably exerts its pro-survival and pro-metastatic effects by sponging anti-tumor miR-98-5p.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e20074-e20074
Author(s):  
Yangyang Fu ◽  
Xiaoying Huang ◽  
Liangxing Wang

e20074 Background: Carboxypepidase A4 (CPA4) is a member of the metallocarboxypeptidase family. Previous study discovered that CPA4 may participate in cell growth and differentiation of prostate epithelial cells. Meanwhile, CPA4 is a printed gene and thought to be involved in prostate cancer aggressiveness. As is reported, CPA4 was increased in NSCLC tissues compared to normal lung tissues and high expression of CPA4 was correlated with poor prognosis of NSCLC patients. However, the role of CPA4 play in lung tumorigenesis is still unclear. Methods: We examined the mRNA and protein expression level of CPA4 via real-time PCR and immunohistochemistry in NSCLC tissues and adjacent tissues. Growth assays both in vitro and in vivo were performed to elucidate the role of CPA4 may play in lung cancer and Fluorescence Activated Cell Sorter was conducted to uncover the putative mechanism. Results: CPA4 expression was increased both in mRNA and protein levels in NSCLC tissues compared to adjacent tissues. MTT and colony formation assays showed that downregulation of CPA4 in H1299 and A549 cells inhibited lung cancer cells proliferation. We further confirmed this result by using cellomics and celligo. Depleting CPA4 also suppressed tumor growth in mice. Mechanically, we found that suppressing CPA4 expression in lung cancer cells could induce apoptosis and G1 arrest. We supposed that CPA4 expression may be associated with caspase family and it needs further studies. Conclusions: Collectively, we demonstrate that decreased CPA4 inhibits NSCLC proliferation via inducing apoptosis and G1 arrest.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Wendan Yu ◽  
Yijun Hua ◽  
Huijuan Qiu ◽  
Jiaojiao Hao ◽  
Kun Zou ◽  
...  

Abstract PD-L1 is overexpressed in tumor cells and contributes to cancer immunoevasion. However, the role of the tumor cell-intrinsic PD-L1 in cancers remains unknown. Here we show that PD-L1 regulates lung cancer growth and progression by targeting the WIP and β-catenin signaling. Overexpression of PD-L1 promotes tumor cell growth, migration and invasion in lung cancer cells, whereas PD-L1 knockdown has the opposite effects. We have also identified WIP as a new downstream target of PD-L1 in lung cancer. PD-L1 positively modulates the expression of WIP. Knockdown of WIP also inhibits cell viability and colony formation, whereas PD-L1 overexpression can reverse this inhibition effects. In addition, PD-L1 can upregulate β-catenin by inhibiting its degradation through PI3K/Akt signaling pathway. Moreover, we show that in lung cancer cells β-catenin can bind to the WIP promoter and activate its transcription, which can be promoted by PD-L1 overexpression. The in vivo experiments in a human lung cancer mouse model have also confirmed the PD-L1-mediated promotion of tumor growth and progression through activating the WIP and β-catenin pathways. Furthermore, we demonstrate that PD-L1 expression is positively correlated with WIP in tumor tissues of human adenocarcinoma patients and the high expression of PD-L1 and WIP predicts poor prognosis. Collectively, our results provide new insights into understanding the pro-tumorigenic role of PD-L1 and its regulatory mechanism on WIP in lung cancer, and suggest that the PD-L1/Akt/β-catenin/WIP signaling axis may be a potential therapeutic target for lung cancers.


2020 ◽  
Vol 15 (1) ◽  
pp. 683-695
Author(s):  
Feng Gu ◽  
Junhan Zhang ◽  
Lin Yan ◽  
Dong Li

AbstractLung cancer is a lethal malignancy. Plenty of circular RNAs (circRNAs) have been identified to be the vital regulators in lung cancer development. Here, we intended to clarify the functional role of circRNA HIPK3 (circHIPK3, also called hsa_circ_0021593) and its underlying mechanism of action. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was employed to evaluate the levels of circHIPK3 and miR-381-3p. Cell viability and apoptosis rate were monitored by Cell Counting Kit-8 assay and flow cytometry, respectively. Cell migration was estimated through the Transwell assay. To assess glycolysis, commercial kits were utilized to measure the levels of glucose and lactate and the enzyme activity of hexokinase-2 (HK2). Expression of related proteins was detected via western blot analysis. The target connection between circHIPK3 and miR-381-3p was validated by dual-luciferase reporter, RIP, and pull-down assays. The role of circHIPK3 in vivo was determined via the xenograft assay. CircHIPK3 was upregulated, while miR-381-3p was downregulated in lung cancer tissues and cells. And circHIPK3 deficiency inhibited lung cancer progression by lowering cell proliferation, migration, glycolysis, and promoting apoptosis of lung cancer cells in vitro. MiR-381-3p was a target of circHIPK3, and miR-381-3p interference alleviated circHIPK3 knockdown-induced lung cancer progression inhibition. CircHIPK3 could activate the protein kinase B/mammalian target of rapamycin (AKT/mTOR) signaling pathway. Moreover, circHIPK3 knockdown suppressed tumor growth in vivo by inactivating the AKT/mTOR signaling pathway. In conclusion, the silencing of circHIPK3 inhibited lung cancer progression, at least in part, by sponging miR-381-3p and inactivating the AKT/mTOR signaling pathway.


2021 ◽  
Author(s):  
Wenmei Su ◽  
Jiancong Wu ◽  
Xiaobi Huang ◽  
Xiaofang Li ◽  
Honglian Zhou ◽  
...  

Abstract Background: In human lung adenocarcinoma (LUAD) tissues, Long noncoding RNA LINC01279 is significantly upregulated. However, the functions of LINC01279 in LUAD is yet to be clarified.Methods: In situ hybridization was employed to investigate the difference between expression of LINC01279 in LUAD and in normal tissues. The result of in situ hybridization is verified by qRT-PCR. Cytoplasmic and nuclear experiments showed that LINC01279 was mainly located in the cytoplasm of lung cancer cells. The loss of function experiment showed that LINC01279 could inhibit the proliferation, colony formation, invasion and migration of lung cancer cells. The interaction between SIN3A and LINC01279 was confirmed by RIP test. At the same time, through western bolt, we found that LINC01279 plays a key role in the regulation of apoptosis and autophagy in lung adenocarcinoma.Results: Our study confirmed that LINC01279 was upregulated in LUAD tissues, the knocking-down of which significantly inhibited the growth of LUAD cancer cells both in vitro and in vivo. Mechanistic investigations revealed that LINC01279 could directly interact with SIN3A and modulate the FAK and ERK protein expression in the cytoplasm. Moreover, the proteins of PARP and LC3B, P62, Beclin-1, respectively related with apoptosis and autophagy, were changed after LINC01279 siRNA. Conclusions: Taken together, our research found that LINC01279 which is significantly up-regulated in LUAD tissues and cell lines, and promotes the changes of FAK and ERK proteins in downstream pathways by combining with SIN3A, promotes the proliferation of LUAD cells, and inhibits apoptosis and autophagy. The results of this work illustrated how LINC01279 is part of a regulatory network that contributes to the oncogenesis of LUAD and proposed LINC01279 could be a potential target for LUAD diagnosis and treatment.


Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ronggang Luo ◽  
Yi Zhuo ◽  
Quan Du ◽  
Rendong Xiao

Abstract Background To detect and investigate the expression of POU domain class 2 transcription factor 2 (POU2F2) in human lung cancer tissues, its role in lung cancer progression, and the potential mechanisms. Methods Immunohistochemical (IHC) assays were conducted to assess the expression of POU2F2 in human lung cancer tissues. Immunoblot assays were performed to assess the expression levels of POU2F2 in human lung cancer tissues and cell lines. CCK-8, colony formation, and transwell-migration/invasion assays were conducted to detect the effects of POU2F2 and AGO1 on the proliferaion and motility of A549 and H1299 cells in vitro. CHIP and luciferase assays were performed for the mechanism study. A tumor xenotransplantation model was used to detect the effects of POU2F2 on tumor growth in vivo. Results We found POU2F2 was highly expressed in human lung cancer tissues and cell lines, and associated with the lung cancer patients’ prognosis and clinical features. POU2F2 promoted the proliferation, and motility of lung cancer cells via targeting AGO1 in vitro. Additionally, POU2F2 promoted tumor growth of lung cancer cells via AGO1 in vivo. Conclusion We found POU2F2 was highly expressed in lung cancer cells and confirmed the involvement of POU2F2 in lung cancer progression, and thought POU2F2 could act as a potential therapeutic target for lung cancer.


2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.


2013 ◽  
Vol 34 (24) ◽  
pp. 3305-3314 ◽  
Author(s):  
Chiao-Yuan Fan ◽  
Hsiu-Chuan Chou ◽  
Yi-Wen Lo ◽  
Yueh-Feng Wen ◽  
Yi-Chih Tsai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document