scholarly journals Migration, Distribution, and Safety Evaluation of Specific Phenotypic and Functional Mouse Spleen-Derived Invariant Natural Killer T2 Cells after Adoptive Infusion

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dongzhi Chen ◽  
Wenbin Xu ◽  
Jingfang Teng ◽  
Huifang Liu ◽  
Yuanyuan Wang ◽  
...  

Herein, the migration distribution and safety of specific phenotypic and functionally identified spleen-derived invariant natural killer T2 (iNKT2) cells after adoptive infusion in mice were studied. The proliferation and differentiation of iNKT cells were induced by intraperitoneal injection of α-galactosylceramide (α-GalCer) in vivo. Mouse spleens were isolated in a sterile environment. iNKT cells were isolated by magnetic-activated cell sorting columns (MS columns). Cytometric bead array (CBA) assay was used to detect cytokine secretion in the supernatant stimulated by iNKT cells. The basic life status of the mice was observed, and systematic quantitative scoring was conducted after injecting spleen-derived iNKT cells through the tail vein. An in vivo imaging system was used to trace the migration and distribution of iNKT cells in DBA mice. The percentage of the iNKT2 subgroup was the highest in 3 days after intraperitoneal injection of α-GalCer, and iNKT2 subsets accounted for more than 92% after separation and purification by magnetic-activated cell sorting (MACS). Anti-inflammatory cytokine IL-4 was mainly found in the supernatant of cell cultures. The adoptive infusion of iNKT cells into healthy mice resulted in no significant change in the basic life status of mice compared with the noninjected group. iNKT cells were detected in the lung, spleen, and liver, but no fluorescence was detected in lymph nodes and thymus. After dissecting the mice, it was found that there were no significant abnormalities in the relevant immune organs, brain, heart, kidney, lung, and other organs. Intraperitoneal injection of α-GalCer results in a large number of iNKT2 cells, mainly secreting anti-inflammatory cytokine IL-4, from the spleen of mice. After adoptive infusion, the iNKT2 cells mainly settled in the liver and spleen of mice with a satisfactory safety profile.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
Y Obata ◽  
N Ishimori ◽  
A Saito ◽  
S Kinugawa ◽  
I Nakano ◽  
...  

Abstract Objective Doxorubicin (DOX) is an effective antineoplastic agent commonly used to treat many types of cancer but its clinical use is limited because of cardiotoxicity, which might proceed to irreversible cardiac dysfunction in a dose-dependent manner. The precise mechanism of DOX-induced cardiotoxicity is still not fully elucidated but it has been reported that cardiac inflammation is involved in the cardiotoxicity. Invariant natural killer T (iNKT) cells, a unique subset of T lymphocytes that recognize glycolipid antigens and secrete a large amount of Th1 and Th2 cytokines on activation, have been shown to play crucial roles in the regulation of immune responses. However, it remains unclear whether iNKT cells are involved in DOX-induced cardiotoxicity. Methods and results Male C57BL/6J mice were administered DOX (20mg/kg body weight single intraperitoneal injection; n=28) or vehicle (Vehicle; n=6). DOX-administered mice were further divided into 2 groups; α-galactosylceramide (αGC, 0.1μg/g body weight twice intraperitoneal injection; DOX-αGC; n=14), which specifically activates iNKT cells, or phosphate-buffered saline alone (PBS; DOX-PBS; n=14) 4 days before and 3 days after DOX administration. Survival rate at 14 days after DOX/Vehicle administration was significantly lower in DOX-PBS than in Vehicle (71% vs. 100%, P<0.05), and this decrease was completely attenuated in DOX-αGC (100%, P<0.05 vs. DOX-PBS). Echocardiography at 14 days after DOX/Vehicle administration revealed that left ventricular (LV) fractional shortening was significantly reduced in DOX-PBS compared to Vehicle (49.3±0.8% vs. 59.2±1.7%, P<0.05), and this decrease was completely attenuated in DOX-αGC (57.7±1.3%, P<0.05 vs. DOX-PBS) without affecting LV end-diastolic diameter. Picro-sirius red staining revealed that the ratio of fibrosis area to the cardiac tissue was markedly higher in DOX-PBS than in Vehicle (4.3±0.5% vs. 2.2±0.1%, P<0.05), and this increase was completely attenuated in DOX-αGC (2.8±0.1%, P<0.05 vs. DOX-PBS). Real-time PCR analysis revealed that mRNA expression of anti-inflammatory Th2 cytokine IL-4 was enhanced by 7.9-folds in DOX-αGC compared to DOX-PBS, though the difference did not reach statistically significance (P=0.09). Conclusions Activation of iNKT cells by αGC ameliorates DOX-induced cardiotoxicity in mice via up-regulation of anti-inflammatory IL-4 and reducing cardiac fibrosis. iNKT cell activation may be a novel therapeutic strategy against DOX-induced cardiotoxicity. Acknowledgement/Funding Japan Agency for Medical Research and Development (18lm0203001j0002) and JSPS KAKENHI (18K15834)


Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2415-2420 ◽  
Author(s):  
Pierre Gourdy ◽  
Luiza M. Araujo ◽  
Ren Zhu ◽  
Barbara Garmy-Susini ◽  
Séverine Diem ◽  
...  

Abstract Mechanisms accounting for gender dimorphism during immune responses are still poorly understood. Since invariant natural killer T (iNKT) cells exert important regulatory functions through their capacity to produce both T helper 1 (Th1) and Th2 cytokines, we addressed the question of whether these activities could be modulated by sexual hormones. We found that in vivo challenge with the specific ligand of iNKT cells, α-galactosylceramide (α-GalCer), induced significantly higher concentrations of interferon γ (IFN-γ) in the serum of female than in that of male mice, while interleukin 4 (IL-4) production was not modified. In support of a crucial role of ovarian hormones in this phenomenon, a significant decrease of serum IFN-γ concentrations occurred in ovariectomized females, in response to treatment with α-GalCer, while orchidectomy affected neither IFN-γ nor IL-4 serum concentrations in males. The implication of estrogens in this selective enhancement of IFN-γ production by iNKT cells was demonstrated by (1) the increased α-GalCer–induced IFN-γ synthesis by iNKT cells upon both in vitro and in vivo exposure to estradiol and (2) the abolition of the sex-linked difference in α-GalCer–induced IFN-γ release in estrogen receptor α-deficient mice. These results provide the first evidence that estrogens influence iNKT cells leading to this gender dimorphism in their cytokine production profile.


Author(s):  
Ming Meng ◽  
Shengde Chen ◽  
Xiang Gao ◽  
Huifang Liu ◽  
Huijuan Zhao ◽  
...  

Whether different injection modes of α-galactosylceramide (α-GalCer) affect the activation of different subsets of invariant natural killer T (iNKT) cells in different tissues and organs of mice is unclear. This study included healthy control, subcutaneous injection, and intraperitoneal injection groups (n=10 in each group). The subcutaneous and intraperitoneal injection groups were injected with α-Galcer (0.1 mg/kg weight), and then the changes in thymus, spleen, and liver iNKT cell frequencies and subsets were observed. The intraperitoneal injection of α-GalCer could increase the frequency of splenic iNKT cells, but the subcutaneous injection did not affect the frequency. Neither injection had any effect on the frequency of iNKT cells in the thymus and liver. The subcutaneous injection of α-GalCer increased the rate of iNKT2 subsets in the thymus but did not affect the rate of iNKT1 subsets. However, the intraperitoneal injection of α-GalCer did not affect thymus iNKT1 and iNKT2 subsets. Interestingly, the subcutaneous injection of α-GalCer significantly increased the proportion of iNKT1 in the spleen and liver but did not significantly change the proportion of iNKT2. The intraperitoneal injection of  α-GalCer significantly increased the rate of iNKT2 in spleen and liver but decreased the rate of iNKT1. Subsets of iNKT1 or iNKT2 cells in the spleen and liver were selectively activated by the subcutaneous or intraperitoneal injection of α-GalCer. It provides a valuable means for treating tumors and certain autoimmune diseases. Further exploration of the activation mechanism may provide new ideas about the development of related vaccines.


2019 ◽  
Vol 3 (5) ◽  
pp. 813-824 ◽  
Author(s):  
Rupali Das ◽  
Peng Guan ◽  
Susan J. Wiener ◽  
Nishant P. Patel ◽  
Trevor G. Gohl ◽  
...  

Abstract Invariant natural killer T (iNKT) cells comprise a unique lineage of CD1d-restricted lipid-reactive T lymphocytes that potently kill tumor cells and exhibit robust immunostimulatory functions. Optimal tumor-directed iNKT cell responses often require expression of the antigen-presenting molecule CD1d on tumors; however, many tumor cells downregulate CD1d and thus evade iNKT cell recognition. We generated a soluble bispecific fusion protein designed to direct iNKT cells to the site of B-cell cancers in a tumor antigen-specific but CD1d-independent manner. This fusion protein is composed of a human CD1d molecule joined to a single chain antibody FV fragment specific for CD19, an antigen widely expressed on B-cell cancers. The CD1d-CD19 fusion protein binds specifically to CD19-expressing, but not CD19-negative cells. Once loaded with the iNKT cell lipid agonist α-galactosyl ceramide (αGC), the CD1d-CD19 fusion induces robust in vitro activation of and cytokine production by human iNKT cells. iNKT cells stimulated by the αGC-loaded CD1d-CD19 fusion also strongly transactivate T-, B-, and NK-cell responses and promote dendritic cell maturation. Importantly, the αGC-loaded fusion induces robust lysis of CD19+CD1d− Epstein-Barr virus immortalized human B-lymphoblastoid cell lines that are otherwise resistant to iNKT cell killing. Consistent with these findings; administration of the αGC-loaded fusion protein controlled the growth of CD19+CD1d− tumors in vivo, suggesting that it can “link” iNKT cells and CD19+CD1d− targets in a therapeutically beneficial manner. Taken together, these preclinical studies demonstrate that this B cell–directed fusion protein can be used to effectively induce iNKT cell antitumor responses in vitro and in vivo.


2020 ◽  
Vol 4 ◽  
pp. 239784732097204 ◽  
Author(s):  
Solomon E Owumi ◽  
Abigail O Ijadele ◽  
Uche O Arunsi ◽  
Oyeronke A Odunola

The anti-neoplastic use of Doxorubicin (DOX) is hampered by several limitations, including reproductive toxicity. Luteolin (LUT)–a phytochemical-biological benefits include antioxidative and anti-inflammatory actions. Here we examined the protective effect of LUT against DOX-induced reproductive toxicity in an in vivo model—male albino Wistar rats—randomly assigned to five groups and treated as follows: Control (corn oil 2 mL/kg; per os), LUT (100 mg/kg; per os), DOX (2 mg/kg) by intraperitoneal injections, co-treated groups received LUT (50 and 100 mg/kg) with DOX. Treatment with DOX alone, significantly (p > 0.05), reduced biomarkers of testicular function, reproductive hormone levels, testicular and epididymal antioxidant, and anti-inflammatory cytokine. DOX increased (p > 0.05) sperm morphological abnormalities, as well as reactive oxygen and nitrogen species, lipid peroxidation, xanthine oxidase, a pro-inflammatory cytokine, and apoptotic biomarkers. Furthermore, testicular and epididymal histological lesion complemented the observed biochemical changes in treated rats. LUT co-treatment resulted in a dosage-dependent improvement in rats’ survivability, antioxidants capacity, reduction in biomarkers of oxidative stress, pro-inflammatory cytokines, and apoptosis in rat’s testis and epididymis. Also, LUT treatment resulted in improved histological features in the testis and epididymis, relative to DOX alone treated rats. LUT co-treatment abated DOX-mediated reproductive organ injuries associated with pro-oxidative, inflammatory, and apoptotic mechanisms. LUT supplementation may serve as a phyto-protective agent in alleviating male reproductive organ toxic injuries associated with Doxorubicin therapy.


Blood ◽  
2021 ◽  
Author(s):  
Kristina Maas-Bauer ◽  
Juliane K. Lohmeyer ◽  
Toshihito Hirai ◽  
Teresa Lopes Ramos ◽  
Furqan Muhammad Fazal ◽  
...  

Invariant Natural Killer T (iNKT) cells are a T cell subset with potent immunomodulatory properties. Experimental evidence in mice and observational studies in humans indicate that iNKT cells have antitumor potential as well as the ability to suppress acute and chronic Graft-versus-Host-Disease (GvHD). Murine iNKT cells differentiate during thymic development into iNKT1, iNKT2 and iNKT17 sublineages, which differ transcriptomically and epigenomically, and have subset-specific developmental requirements. Whether distinct iNKT sublineages also differ in their antitumor effect and their ability to suppress GvHD is currently unknown. In this work, we generated highly purified murine iNKT-sublineages, characterized their transcriptomic and epigenomic landscape, and assessed specific functions. We demonstrate that iNKT2 and iNKT17, but not iNKT1 cells, efficiently suppress T cell activation in vitro and mitigate murine acute GvHD in vivo. Conversely, we show that iNKT1 cells display the highest antitumor activity against murine B-cell lymphoma cells both in vitro and in vivo. Thus, we demonstrate for the first time that iNKT sublineages have distinct and different functions, with iNKT1 cells having the highest antitumor activity and iNKT2 and iNKT17 cells having immune-regulatory properties. These results have important implications for the translation of iNKT cell therapies to the clinic for cancer immunotherapy as well as for GvHD prevention and treatment.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e76692 ◽  
Author(s):  
Felix Scheuplein ◽  
Abraham Thariath ◽  
Susan Macdonald ◽  
Alemseged Truneh ◽  
Robert Mashal ◽  
...  

2020 ◽  
Vol 21 (14) ◽  
pp. 5085
Author(s):  
Peng Guan ◽  
Robert Schaub ◽  
Kim E. Nichols ◽  
Rupali Das

Invariant natural killer T (iNKT) cells are innate-like T lymphocytes characterized by the expression of an invariant T cell receptor (iTCR) that recognizes glycolipid antigens presented by the MHC I-like CD1d molecule. Following antigenic stimulation, iNKT cells rapidly produce large amounts of cytokines that can trans-activate dendritic cells (DC) and promote the anti-tumor functions of cytotoxic lymphocytes, such as natural killer (NK) and CD8 T cells. Additionally, iNKT cells can mediate robust and direct cytotoxicity against CD1d+ tumor targets. However, many tumors down-regulate CD1d and evade iNKT cell attack. To circumvent this critical barrier to iNKT cell anti-tumor activity, a novel monoclonal antibody (mAb), NKT14 has been recently developed. This agonistic antibody binds directly and specifically to the iTCR of murine iNKT cells. In the current study, we demonstrate that NKT14m mediates robust activation, cytokine production and degranulation of murine iNKT cells, in vitro. Consistently, NKT14m also promoted iNKT cell activation and immunomodulatory functions, in vivo. Finally, administration of NKT14m with low dose interleukin (IL)-12 further augmented iNKT cell IFN-γ production in vivo, and this combination conferred superior suppression of tumor cell growth compared to NKT14m or IL-12 alone. Together, these data demonstrate that a combination treatment consisting of low dose IL-12 and iTCR-specific mAb may be an attractive alternative to activate iNKT cell anti-tumor functions.


Sign in / Sign up

Export Citation Format

Share Document