scholarly journals The Key Ingredient Acacetin in Weishu Decoction Alleviates Gastrointestinal Motility Disorder Based on Network Pharmacology Analysis

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xuan Guo ◽  
Yin Xu ◽  
Hua-liang Tan ◽  
Xiao-juan Wang ◽  
Lin Xiao

Background. Gastrointestinal motility disorder is a common gastrointestinal disease, which seriously affects life quality. Traditional Chinese medicine (TCM) has been widely used as an alternative therapy for gastrointestinal motility disorder. Acacetin is a natural flavonoid compound that has antioxidant and anti-inflammatory, antidepressant, and anticancer properties. However, the efficacy of Acacetin in the treatment of gastrointestinal motility disorders has not been studied. Our aim was to investigate the mechanism of Acacetin-alleviated gastrointestinal motility disorder and its efficacy based on network pharmacology. Methods. We performed network pharmacology to predict the active components, match Weishu decoction (WSD) targets in gastrointestinal motility disorders, and investigate its potential pharmacological mechanisms. We performed the GO and KEGG enrichment analysis. In vivo, we investigated the effects of Acacetin in the gastrointestinal motility disorder model. Results. Based on network pharmacological method, the key active ingredient of WSD was identified as Acacetin, and the enrichment signaling pathway was the PI3K-AKT signaling pathway. Acacetin and Mosapride accelerated gastric emptying time, reduced gastric remnant rate, and increased small intestinal propulsion rate. The levels of GAS and MTL were increased after using Acacetin. These results indicated that Acacetin could improve gastrointestinal motility disorders. Among them, high-dose Acacetin showed a better effect. Acacetin could regulate protein and lipid metabolism in mice with gastrointestinal motility disorder. Furthermore, Acacetin could modulate gastrointestinal inflammation and apoptosis. The detection of the PI3K-AKT signaling pathway-related proteins showed that Acacetin improved gastrointestinal motility disorder by inhibiting the activation of the PI3K-AKT signaling pathway. Conclusion. The key ingredient Acacetin in WSD could alleviate gastrointestinal motility disorder by inhibiting the activation of the PI3K-AKT signaling pathway based on network pharmacology analysis. The efficacy and safety of Acacetin treatment provide strong experimental support for the clinical treatment of gastrointestinal motility disorder.

2021 ◽  
Vol 8 ◽  
Author(s):  
Yuefeng Zhang ◽  
Fei Yu ◽  
Jingyou Hao ◽  
Eliphaz Nsabimana ◽  
Yanru Wei ◽  
...  

Stress diarrhea is a major challenge for weaned piglets and restricts pig production efficiency and incurs massive economic losses. A traditional Chinese medicine prescription (QJC) composed of Astragalus propinquus Schischkin (HQ), Zingiber officinale Roscoe (SJ), and Plantago asiatica L. (CQC) has been developed by our laboratory and shows marked anti-stress diarrhea effect. However, the active compounds, potential targets, and mechanism of this effect remain unclear and warrant further investigation. In our study, we verified the bioactive compounds of QJC and relevant mechanisms underlying the anti-stress diarrhea effect through network pharmacology and in vivo experimental studies. After establishing a successful stress-induced diarrhea model, histomorphology of intestinal mucosa was studied, and Quantitative real-time PCR (RT-qPCR) probe was used for the phosphoinositide 3-kinase (PI3K)–Akt signaling pathway to verify the therapeutic effect of QJC on diarrhea. First, using the network pharmacology approach, we identified 35 active components and 130 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in QJC. From among these, we speculated that quercetin, luteolin, kaempferol, scutellarein, and stigmasterol were the main bioactive compounds and assumed that the anti-diarrhea effect of QJC was related to the PI3K–Akt signaling pathway. The RT-qPCR indicated that QJC and its bioactive components increased the expression levels of PI3K and Akt, inhibited the expression of phosphatase and tensin homolog (PTEN), and activated the PI3K–Akt signaling pathway to relieve stress-induced diarrhea. Furthermore, we found that QJC alleviated the pathological condition of small intestine tissue and improved the integrity of the intestinal barrier. Taken together, our study showed that the traditional Chinese medicine QJC, quercetin, luteolin, kaempferol, scutellarein, and stigmasterol alleviated the pathological condition of small intestine tissue and relieved stress-induced diarrhea by increasing the expression levels of PI3K and Akt and inhibiting the expression levels of PTEN.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Kai Niu ◽  
Qifang Li ◽  
Yuan Liu ◽  
Yi Qiao ◽  
Bingbing Li ◽  
...  

This study aims to analyze the targets of the effective active ingredients of Scutellariae radix-Coptidis rhizoma drug pair (SCDP) in ulcerative colitis (UC) by network pharmacology and molecular docking and to explore the associated therapeutic mechanism. The effective active ingredients and targets of SCDP were determined from the TCMSP database, and the drug ingredient-target network was constructed using the Cytoscape software. The disease targets related to UC were searched in GeneCards, DisGeNET, OMIM, and DrugBank databases. Then, the drug ingredient and disease targets were intersected to construct a protein-protein interaction network through the STRING database. The Metascape database was used for the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the predicted targets of SCDP for UC. The Autodock software was used for molecular docking between the main active ingredient and the core target to evaluate the binding ability. SCDP has 43 effective active ingredients and 134 intersection targets. Core targets included AKT1, TP53, IL-6, VEGFA, CASP3, JUN, TNF, MYC, EGFR, and PTGS2. GO functional enrichment analysis showed that biological process was mainly associated with a cytokine-mediated signaling pathway, response to an inorganic substance, response to a toxic substance, response to lipopolysaccharide, reactive oxygen species metabolic process, positive regulation of cell death, apoptotic signaling pathway, and response to wounding. KEGG enrichment analysis showed main pathway concentrations were related to pathways in cancer, AGE-RAGE signaling pathway in diabetic complications, bladder cancer, IL-17 signaling pathway, apoptosis, p53 signaling pathway, and PI3K-Akt signaling pathway. The drug active ingredient-core target-key pathway network contains 41 nodes and 108 edges, of which quercetin, wogonin, baicalein, acacetin, oroxylin A, and beta-sitosterol are important active ingredients; PTGS2, CASP3, TP53, IL-6, TNF, and AKT1 are important targets; and the pathways involved in UC treatment include pathways in cancer, PI3K-Akt signaling pathway, AGE-RAGE signaling pathway in diabetic, apoptosis, IL-17 signaling pathway and herpes simplex infection. The active ingredient has a good binding capacity to the core target. SCDP key active ingredients are mainly quercetin, wogonin, baicalein, acacetin, oroxylin A, and beta-sitosterol, which function mainly by regulating targets, such as PTGS2, CASP3, TP53, IL-6, TNF, and AKT1, and are associated with multiple signaling pathways as pathways in cancer, PI3K-Akt signaling pathway, apoptosis, IL-17 signaling pathways.


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Zhihui Cai ◽  
Huajun Wang ◽  
Jun Jiang ◽  
Shichang Xiao ◽  
Jianpeng Xiao ◽  
...  

Osteoporosis is a degenerative disease that endangers human health. At present, chemical drugs used for osteoporosis have serious side effects. Therefore, it is valuable to search herbs with high safety and good curative effect in antiosteoporosis. Erzhi formula (EZF), an ancient classic compound, has been reported to have a beneficial effect in antiosteoporosis, but its mechanism is unclear. In this paper, the active compounds of EZF were found in Systems Pharmacology Database, and gene targets related to osteoporosis were obtained in GeneCards. The GO functional and KEGG pathway enrichment analysis were performed by Metascape. The network of “components-targets-signal pathway” was constructed by Cytoscape. Next, molecular docking between the active components and hub genes related to the PI3K-Akt signaling pathway was conducted by Autodock. In the verification experiment, the zebrafish induced by prednisolone (PNSL) was used to reproduce glucocorticoid-induced osteoporosis (GIOP) model, and then the reversal effects of EZF were systematically evaluated according to the behavior, skull staining area, bone mineralization area (BMA), average optical density (AOD), and cumulative optical density (COD). Finally, it was shown that 24 components in EZF could regulate 39 common gene targets to exert antiosteoporosis effect. Besides, the main regulatory mechanisms of EZF were 4 signaling pathways: PI3K-Akt, JAK-STAT, AGE-RAGE, and cancer pathway. In PI3K-Akt signaling pathway, wedelolactone, dimethyl wedelolactone, specnuezhenide, ursolic acid, acacetin, beta-sitosterol, apigenin, and kaempferol can bind tightly with EGF, IL-2, and IL-4 genes. Compared with the model group, the moving distance, swimming speed, and cumulative swimming time of zebrafish in EZF group were significantly increased ( P < 0.05 ). Meanwhile, the BMA and COD of zebrafish were significantly improved after the intervention of EZF ( P < 0.05 ). In summary, the 24 components of EZF exert their antiosteoporosis effects by regulating 39 related gene targets, among which the PI3K signaling pathway is crucial. EZF can promote bone formation and reversed GIOP through “multicomponent/multitarget/multipathway” and the medium dose of EZF may be the most suitable concentration for the treatment of GIOP in zebrafish model.


Author(s):  
Zefeng Wang ◽  
Qianfei Cui ◽  
Ling Shi ◽  
Meiling Zhang ◽  
Peng Song ◽  
...  

Background: Shikonin (SKN), a naturally occurring naphthoquinone, is a major active chemical component isolated from Lithospermum erythrorhizon Sieb Zucc, Arnebia euchroma (Royle) Johnst, or Arnebia guttata Bunge, and commonly used to treat viral infection, inflammation, and cancer. However, the underlying mechanism has not been elucidated Objective: This study aims to explore the antitumor mechanism of SKN in colorectal cancer (CRC) through network pharmacology and cell experiments. Methods: Using SymMap database and Genecards to predict the potential targets of SKN and CRC, while the cotargets were obtained by Venn diagram. The cotargets were imported into website of String and DA DAVID, constructing the protein-protein interaction (PPI) network, performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, the Compound-Target-Pathway (C-T-P) network was generated by connecting potential pathways with the corresponding targets. Results: According to the results of network pharmacological analysis, the cell experiments were used to verify the key signal pathway. The most relevant target of SKN for the treatment of CRC was PI3K/Akt signaling pathway. SKN inhibited CRC cells (HT29 and HCT116) proliferation, migration, and invasion, and promoted cell apoptosis by targeting IL6 and inhibiting the IL6R/PI3K/Akt signaling pathway. SKN promotes apoptosis and suppresses CRC cells (HT29 and HCT116) activity through the PI3K-Akt signaling pathway. Conclusion: This research not only provides a theoretical and experimental basis for more in-depth studies but also offers an efficient method for the rational utilization of a series of Traditional Chinese medicines as anti-CRC drugs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dan Zhang ◽  
Yizhu Dong ◽  
Jintao Lv ◽  
Bing Zhang ◽  
Xiaomeng Zhang ◽  
...  

Abstract Background Tripterygium hypoglaucum Hutch (THH) both has prominent efficacy and unwarranted toxicity in the treatment of autoimmune diseases. Nevertheless, its pharmacological and toxicological profiles still remain to be elucidated. In the current study, the network pharmacology approach was applied to identify synergistic interaction and mechanism of efficacy and toxicity for THH from a holistic perspective. Methods The compounds from THH were collected using literature retrieval and relevant databases. After the production of putative therapeutic targets for dominant diseases and harmful targets of adverse reactions (ADRs) induced by THH, the protein-protein interactions (PPIs), topological analysis and pathway enrichment were established to distinguish the hub targets and pathways. Additionally, the binding activity of candidate ingredients with core targets were revealed by molecular docking simulation. Results A total of eight bioactive components in THH were enrolled, and 633 targets were responsible for rheumatoid arthritis (RA), 1067 targets were corresponding to systemic lupus erythematosus (SLE), 1318 targets of ADRs were obtained. The results of enrichment analysis among THH-RA, THH-SLE and THH-ADR networks indicated that pathway in cancer, hepatitis B, rheumatoid arthritis, and PI3K-Akt signaling pathway might participate in THH for treating RA and SLE. Besides, the mechanism of ADRs that induced by THH were associated with viral carcinogenesis, p53 signaling pathway, PI3K-Akt signaling pathway, and so on. Whereas, these active ingredients of THH exerted the superior binding activities with crucial targets including STAT3, VEGFA, TP53 and MMP9 that functioned synergistically efficacy and toxicity as observed via molecular docking simulation. Conclusion The present research preliminarily interpreted the synergistic interaction of therapeutic and toxicological mechanisms for THH through the comprehensive analysis of relationship and binding activity between primary components and core targets, providing a feasible and promising approach to facilitate the development of toxic and irreplaceable herbs.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lingjian Guo ◽  
Haixia Shi ◽  
Limin Zhu

Siteng Fang (STF) has been shown to inhibit migration, invasion, and adhesion as well as promote apoptosis in gastric cancer (GC) cells. However, whether it can reverse the multidrug resistance (MDR) of GC to chemotherapy drugs is unknown. Thus, we aimed to elucidate the mechanism of STF in reversing the MDR of GC. The chemical composition of STF and genes related to GC were obtained from the TCMNPAS(TCM Network Pharmacology Analysis System, TCMNPAS) Database, and the targets of the active ingredients were predicted using the Swiss Target Prediction Database. The obtained data were mapped to obtain the key active ingredients and core targets of STF in treating GC. The active component-target network and protein interaction network were constructed by Cytoscape and String database, and the key genes and core active ingredients were obtained. The biological functions and related signal pathways corresponding to the key targets were analyzed and then verified via molecular docking. A total of 14 core active ingredients of STF were screened, as well as 20 corresponding targets, which were mainly enriched in cancer pathway, proteoglycan synthesis, PI3K-AKT signaling pathway, and focal adhesion. Molecular docking showed that the core active ingredients related to MDR, namely quercetin and diosgenin, could bind well to the target. In summary, STF may reverse the MDR of GC and exert synergistic effect with chemotherapeutic drugs. It mediates MDR mainly through the action of quercetin and diosgenin on the PI3K/AKT signaling pathway. These findings are the first to demonstrate the molecular mechanism of STF in reversing MDR in GC, thus providing a direction for follow-up basic research.


Sign in / Sign up

Export Citation Format

Share Document