scholarly journals Multitype Damage Detection of Container Using CNN Based on Transfer Learning

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zixin Wang ◽  
Jing Gao ◽  
Qingcheng Zeng ◽  
Yuhui Sun

Due to the repeated bearing of mechanical operations and natural factors, the container will suffer various types of damage during use. Adopting effective container damage detection methods plays a vital role in prolonging the service life and using function. This paper proposes a multitype damage detection model for containers based on transfer learning and MobileNetV2. In addition, a data set containing nine typical types of container damage is established. To ensure the validity and practicability of the model, we conducted tests and verifications in the actual port environment. The results show that the model can identify multiple types of container damage. Compared with the existing models, the damage detection model proposed in this paper can ensure the identification effect of various types of container damage, which is more suitable for the actual container detection situation. This method can provide a new idea of damage detection for container management in ports.

2017 ◽  
Vol 17 (4) ◽  
pp. 850-868 ◽  
Author(s):  
William Soo Lon Wah ◽  
Yung-Tsang Chen ◽  
Gethin Wyn Roberts ◽  
Ahmed Elamin

Analyzing changes in vibration properties (e.g. natural frequencies) of structures as a result of damage has been heavily used by researchers for damage detection of civil structures. These changes, however, are not only caused by damage of the structural components, but they are also affected by the varying environmental conditions the structures are faced with, such as the temperature change, which limits the use of most damage detection methods presented in the literature that did not account for these effects. In this article, a damage detection method capable of distinguishing between the effects of damage and of the changing environmental conditions affecting damage sensitivity features is proposed. This method eliminates the need to form the baseline of the undamaged structure using damage sensitivity features obtained from a wide range of environmental conditions, as conventionally has been done, and utilizes features from two extreme and opposite environmental conditions as baselines. To allow near real-time monitoring, subsequent measurements are added one at a time to the baseline to create new data sets. Principal component analysis is then introduced for processing each data set so that patterns can be extracted and damage can be distinguished from environmental effects. The proposed method is tested using a two-dimensional truss structure and validated using measurements from the Z24 Bridge which was monitored for nearly a year, with damage scenarios applied to it near the end of the monitoring period. The results demonstrate the robustness of the proposed method for damage detection under changing environmental conditions. The method also works despite the nonlinear effects produced by environmental conditions on damage sensitivity features. Moreover, since each measurement is allowed to be analyzed one at a time, near real-time monitoring is possible. Damage progression can also be given from the method which makes it advantageous for damage evolution monitoring.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Guanghui Liang ◽  
Jianmin Pang ◽  
Zheng Shan ◽  
Runqing Yang ◽  
Yihang Chen

To address emerging security threats, various malware detection methods have been proposed every year. Therefore, a small but representative set of malware samples are usually needed for detection model, especially for machine-learning-based malware detection models. However, current manual selection of representative samples from large unknown file collection is labor intensive and not scalable. In this paper, we firstly propose a framework that can automatically generate a small data set for malware detection. With this framework, we extract behavior features from a large initial data set and then use a hierarchical clustering technique to identify different types of malware. An improved genetic algorithm based on roulette wheel sampling is implemented to generate final test data set. The final data set is only one-eighteenth the volume of the initial data set, and evaluations show that the data set selected by the proposed framework is much smaller than the original one but does not lose nearly any semantics.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 323 ◽  
Author(s):  
Wentao Mao ◽  
Di Zhang ◽  
Siyu Tian ◽  
Jiamei Tang

In recent years, machine learning techniques have been proven to be a promising tool for early fault detection of rolling bearings. In many actual applications, however, bearing whole-life data are not easy to be historically accumulated, while insufficient data may result in training a detection model that is not good enough. If utilizing the available data under different working conditions to facilitate model training, the data distribution of different bearings are usually quite different, which does not meet the precondition of i n d e p e n d e n t a n d i d e n t i c a l d i s t r i b u t i o n ( i . i . d ) and tends to cause performance reduction. In addition, disturbed by the unstable noise under complex conditions, most of the current detection methods are inclined to raise false alarms, so that the reliability of detection results needs to be improved. To solve these problems, a robust detection method for bearings early fault is proposed based on deep transfer learning. The method includes offline stage and online stage. In the offline stage, by introducing a deep auto-encoder network with domain adaptation, the distribution inconsistency of normal state data among different bearings can be weakened, then the common feature representation of the normal state is obtained. With the extracted common features, a new state assessment method based on the robust deep auto-encoder network is proposed to evaluate the boundary between normal state and early fault state in the low-rank feature space. By training a support vector machine classifier, the detection model is established. In the online stage, along with the data batch arriving sequentially, the features of target bearing are extracted using the common representation learnt in the offline stage, and online detection is conducted by feeding them into the SVM model. Experimental results on IEEE PHM Challenge 2012 bearing dataset and XJTU-SY dataset show that the proposed approach outperforms several state-of-the-art detection methods in terms of detection accuracy and false alarm rate.


Author(s):  
Feifei Yin ◽  
Jingxuan Wang ◽  
Wei Xiong ◽  
Juanjuan Gao ◽  
Yu Gong

As an important core in the intelligent traffic management system, the technology and application of license plate recognition have become research focus. Detecting the accurate location of a license plate from a vehicle image is considered to be the most crucial step of license plate recognition, which greatly affects the recognition rate and speed of the whole system. Nevertheless, due to the low accuracy of license plate detection in natural scenes, further investigations are still needed in this field in order to make the detection process very efficient. In this paper, We have studied and implemented a convolutional neural network license plate detection algorithm based on transfer learning. According to the invention, new energy license plates and ordinary license plates are adopted as the research objects. The text detection model AdvancedEAST is trained on the license plate images through the transfer learning method, and experiments are carried out on the self-built license plate dataset. The experimental results show that the algorithm can better adapt to light complexity, low resolution, target interference, license plate tilt and other complex conditions. The license plate positioning algorithm has high accuracy in natural scenes, and it is superior to the traditional license plate detection methods.


2021 ◽  
Author(s):  
shouqiang Liu ◽  
Mingyue Jiang ◽  
Liming Chen ◽  
Yang Wang

Abstract Novel coronavirus pneumonia (COVID-19) is a highly infectious and fatal pneumonia-type disease that poses a great threat to the public safety of society. A fast and efficient method for screening COVID19-positive patients is essential. At present, the main detection methods are nucleic acid detection of manual diagnosis and medical imaging (CT image/X-ray image), both of which take a long time to obtain the diagnosis result. This paper discusses the common processing methods for the problem of insufficient medical image data. Then, transfer learning and convolutional neural network were used to construct the screening and diagnosis model of COVID-19, and different migration models were analyzed and compared to select a better pre-training model, which was trained and analyzed under small data sets. Finally, it analyzes and discusses how to train a highly reliable model to quickly help doctors provide advice in the critical moment of epidemic prevention and control when only a small sample data set is available.


Author(s):  
M. Jeyanthi ◽  
C. Velayutham

In Science and Technology Development BCI plays a vital role in the field of Research. Classification is a data mining technique used to predict group membership for data instances. Analyses of BCI data are challenging because feature extraction and classification of these data are more difficult as compared with those applied to raw data. In this paper, We extracted features using statistical Haralick features from the raw EEG data . Then the features are Normalized, Binning is used to improve the accuracy of the predictive models by reducing noise and eliminate some irrelevant attributes and then the classification is performed using different classification techniques such as Naïve Bayes, k-nearest neighbor classifier, SVM classifier using BCI dataset. Finally we propose the SVM classification algorithm for the BCI data set.


2019 ◽  
Vol 9 (6) ◽  
pp. 1128 ◽  
Author(s):  
Yundong Li ◽  
Wei Hu ◽  
Han Dong ◽  
Xueyan Zhang

Using aerial cameras, satellite remote sensing or unmanned aerial vehicles (UAV) equipped with cameras can facilitate search and rescue tasks after disasters. The traditional manual interpretation of huge aerial images is inefficient and could be replaced by machine learning-based methods combined with image processing techniques. Given the development of machine learning, researchers find that convolutional neural networks can effectively extract features from images. Some target detection methods based on deep learning, such as the single-shot multibox detector (SSD) algorithm, can achieve better results than traditional methods. However, the impressive performance of machine learning-based methods results from the numerous labeled samples. Given the complexity of post-disaster scenarios, obtaining many samples in the aftermath of disasters is difficult. To address this issue, a damaged building assessment method using SSD with pretraining and data augmentation is proposed in the current study and highlights the following aspects. (1) Objects can be detected and classified into undamaged buildings, damaged buildings, and ruins. (2) A convolution auto-encoder (CAE) that consists of VGG16 is constructed and trained using unlabeled post-disaster images. As a transfer learning strategy, the weights of the SSD model are initialized using the weights of the CAE counterpart. (3) Data augmentation strategies, such as image mirroring, rotation, Gaussian blur, and Gaussian noise processing, are utilized to augment the training data set. As a case study, aerial images of Hurricane Sandy in 2012 were maximized to validate the proposed method’s effectiveness. Experiments show that the pretraining strategy can improve of 10% in terms of overall accuracy compared with the SSD trained from scratch. These experiments also demonstrate that using data augmentation strategies can improve mAP and mF1 by 72% and 20%, respectively. Finally, the experiment is further verified by another dataset of Hurricane Irma, and it is concluded that the paper method is feasible.


Author(s):  
Jianping Ju ◽  
Hong Zheng ◽  
Xiaohang Xu ◽  
Zhongyuan Guo ◽  
Zhaohui Zheng ◽  
...  

AbstractAlthough convolutional neural networks have achieved success in the field of image classification, there are still challenges in the field of agricultural product quality sorting such as machine vision-based jujube defects detection. The performance of jujube defect detection mainly depends on the feature extraction and the classifier used. Due to the diversity of the jujube materials and the variability of the testing environment, the traditional method of manually extracting the features often fails to meet the requirements of practical application. In this paper, a jujube sorting model in small data sets based on convolutional neural network and transfer learning is proposed to meet the actual demand of jujube defects detection. Firstly, the original images collected from the actual jujube sorting production line were pre-processed, and the data were augmented to establish a data set of five categories of jujube defects. The original CNN model is then improved by embedding the SE module and using the triplet loss function and the center loss function to replace the softmax loss function. Finally, the depth pre-training model on the ImageNet image data set was used to conduct training on the jujube defects data set, so that the parameters of the pre-training model could fit the parameter distribution of the jujube defects image, and the parameter distribution was transferred to the jujube defects data set to complete the transfer of the model and realize the detection and classification of the jujube defects. The classification results are visualized by heatmap through the analysis of classification accuracy and confusion matrix compared with the comparison models. The experimental results show that the SE-ResNet50-CL model optimizes the fine-grained classification problem of jujube defect recognition, and the test accuracy reaches 94.15%. The model has good stability and high recognition accuracy in complex environments.


2021 ◽  
pp. 147592172199847
Author(s):  
William Soo Lon Wah ◽  
Yining Xia

Damage detection methods developed in the literature are affected by the presence of outlier measurements. These measurements can prevent small levels of damage to be detected. Therefore, a method to eliminate the effects of outlier measurements is proposed in this article. The method uses the difference in fits to examine how deleting an observation affects the predicted value of a model. This allows the observations that have a large influence on the model created, to be identified. These observations are the outlier measurements and they are eliminated from the database before the application of damage detection methods. Eliminating the outliers before the application of damage detection methods allows the normal procedures to detect damage, to be implemented. A multiple-regression-based damage detection method, which uses the natural frequencies as both the independent and dependent variables, is also developed in this article. A beam structure model and an experimental wooden bridge structure are analysed using the multiple-regression-based damage detection method with and without the application of the method proposed to eliminate the effects of outliers. The results obtained demonstrate that smaller levels of damage can be detected when the effects of outlier measurements are eliminated using the method proposed in this article.


Author(s):  
Xuewu Zhang ◽  
Yansheng Gong ◽  
Chen Qiao ◽  
Wenfeng Jing

AbstractThis article mainly focuses on the most common types of high-speed railways malfunctions in overhead contact systems, namely, unstressed droppers, foreign-body invasions, and pole number-plate malfunctions, to establish a deep-network detection model. By fusing the feature maps of the shallow and deep layers in the pretraining network, global and local features of the malfunction area are combined to enhance the network's ability of identifying small objects. Further, in order to share the fully connected layers of the pretraining network and reduce the complexity of the model, Tucker tensor decomposition is used to extract features from the fused-feature map. The operation greatly reduces training time. Through the detection of images collected on the Lanxin railway line, experiments result show that the proposed multiview Faster R-CNN based on tensor decomposition had lower miss probability and higher detection accuracy for the three types faults. Compared with object-detection methods YOLOv3, SSD, and the original Faster R-CNN, the average miss probability of the improved Faster R-CNN model in this paper is decreased by 37.83%, 51.27%, and 43.79%, respectively, and average detection accuracy is increased by 3.6%, 9.75%, and 5.9%, respectively.


Sign in / Sign up

Export Citation Format

Share Document