scholarly journals A Review on Biosurfactant Applications in the Petroleum Industry

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wei Xi ◽  
Yuanye Ping ◽  
Masoome Agha Alikhani

The inadequacy of worldwide fossil fuel resources, combined with increasing energy demands, encourages global attention to either using alternative energy resources or improving the recovery factor and produce larger quantities from present reservoirs. Among all enhanced oil recovery (EOR) methods, surfactant injection is a well-known technique that reduces the interfacial tension (IFT) between oil and water and increases oil production. Despite numerous advantages of using surfactants, there are also a few obstacles like environmental impacts, high cost, effect on humans and other organisms due to toxicological potential, and availability from nonrenewable resources. Biosurfactants are microbial surface-active agents that decrease the surface tension (ST) of a liquid phase and the IFT of two diverse phases. They are biotechnological products of high value owing to their widespread applications, low toxicity, relatively easy preparation, and specific performance, applied in different industries like organic chemicals and fertilizers, agrochemicals, metallurgy and mining, cosmetics, foods, medical and pharmaceuticals, beverages, environmental management, and petroleum and petrochemical applications in emulsifying and demulsifying wetting agents, detergent spreading and foaming agents, and functional food ingredients. Biosurfactants are synthesized by microbes; therefore, various genetic diversities of microorganisms provide the considerable capability to produce new types of biosurfactants, which can develop EOR technology. Biosurfactants are classified into ex situ and in situ MEOR processes. The genera Pseudomonas, Bacillus, Sphingomonas, and Actinobacteria are the foremost biosurfactant-producing bacteria. This paper reviews relevant reports and results from various presented papers by researchers and companies on applications of microorganisms and biosurfactant technology with specific emphasis on EOR and MEOR processes, based on recently published articles since 2010 until now.

2017 ◽  
Vol 3 (1) ◽  
pp. 11
Author(s):  
Masrufaiyah Masrufaiyah ◽  
Ridho Hantoro ◽  
Gunawan Nugroho ◽  
Totok R Biyanto ◽  
Nur Laila Hamidah

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Md. Abdul Halim ◽  
Md. Owaleur Rahman ◽  
Mohammad Ibrahim ◽  
Rituparna Kundu ◽  
Biplob Kumar Biswas

Finding sustainable alternative energy resources and treating wastewater are the two most important issues that need to be solved. Microbial fuel cell (MFC) technology has demonstrated a tremendous potential in bioelectricity generation with wastewater treatment. Since wastewater can be used as a source of electrolyte for the MFC, the salient point of this study was to investigate the effect of pH on bioelectricity production using various biomass feed (wastewater and river water) as the anolyte in a dual-chambered MFC. Maximum extents of power density (1459.02 mW·m−2), current density (1288.9 mA·m−2), and voltage (1132 mV) were obtained at pH 8 by using Bhairab river water as a feedstock in the MFC. A substantial extent of chemical oxygen demand (COD) removal (94%) as well as coulombic efficiency (41.7%) was also achieved in the same chamber at pH 8. The overall performance of the MFC, in terms of bioelectricity generation, COD removal, and coulombic efficiency, indicates a plausible utilization of the MFC for wastewater treatment as well as bioelectricity production.


2021 ◽  
Author(s):  
Hung Vo Thanh ◽  
Kang-Kun Lee

Abstract Basement formation is known as the unique reservoir in the world. The fractured basement reservoir was contributed a large amount of oil and gas for Vietnam petroleum industry. However, the geological modelling and optimization of oil production is still a challenge for fractured basement reservoirs. Thus, this study aims to introduce the efficient workflow construction reservoir models for proposing the field development plan in a fractured crystalline reservoir. First, the Halo method was adapted for building the petrophysical model. Then, Drill stem history matching is conducted for adjusting the simulation results and pressure measurement. Next, the history-matched models are used to conduct the simulation scenarios to predict future reservoir performance. The possible potential design has four producers and three injectors in the fracture reservoir system. The field prediction results indicate that this scenario increases approximately 8 % oil recovery factor compared to the natural depletion production. This finding suggests that a suitable field development plan is necessary to improve sweep efficiency in the fractured oil formation. The critical contribution of this research is the proposed modelling and simulation with less data for the field development plan in fractured crystalline reservoir. This research's modelling and simulation findings provide a new solution for optimizing oil production that can be applied in Vietnam and other reservoirs in the world.


2016 ◽  
Vol 3 (5) ◽  
pp. 3 ◽  
Author(s):  
Ubaid Rasool ◽  
S. Hemalatha

Bioenergy refers to renewable energy produced from biomass. Biomass is any organic material which has stored sunlight in the form of chemical energy. Depleting fossil fuel reserves and growing demand for energy has necessitated the renewed search for alternative energy resources such as plants. Biofuels are an alternative to fossil fuels, which are liquid or gaseous fuels that are derived from biomass sources. Biofuels can be used alone or in combination with other fossil fuels such as petrol. Biofuels are classified into first, second and third generation biofuels. In this review paper, emphasis on the production of biodiesel and bioethanol and how to modify the methods that involve their formation has been carried out. Biodiesel and bioethanol come under first generation biofuels. The first generation biofuels are produced from starch and sugars (bioethanol) and from seed oils (biodiesel). The direct use of vegetable oils and non-edible oils can prove harmful for the diesel engines due to their high viscosity, high density and various other problems that are related to them. So there is a need of converting these sources into biodiesel so that it can be used as a replacement for petroleum based diesel. Another important biofuel, referred to as bioethanol has gained a lot of importance. This review article deals with the conversion of non-edible oils to biodiesel or by modifying the process of transesterification as well as the conversion of sugars to bioethanol by genetic modification of yeast cells and by changing the substrates required for ethanol production by yeast.


Author(s):  
Dwi Listriana Kusumastuti

Water, oil and gas inside the earth are stored in the pores of the reservoir rock. In the world of petroleum industry, calculation of volume of the oil that can be recovered from the reservoir is something important to do. This calculation involves the calculation of the velocity of fluid flow by utilizing the principles and formulas provided by the Fluid Dynamics. The formula is usually applied to the fluid flow passing through a well defined control volume, for example: cylinder, curved pipe, straight pipes with different diameters at the input and output, and so forth. However, because of reservoir rock, as the fluid flow medium, has a wide variety of possible forms of the control volumes, hence, calculation of the velocity of the fluid flow is becoming difficult as it would involve calculations of fluid flow velocity for each control volume. This difficulties is mainly caused by the fact that these control volumes, that existed in the rock, cannot be well defined. This paper will describe a method for calculating this fluid flow velocity of the control volume, which consists of a combination of laboratory measurements and the use of some theories in the Fluid Dynamics. This method has been proofed can be used for calculating fluid flow velocity as well as oil recovery in reservoir rocks, with fairly good accuration.


Author(s):  
M. SBANCA ◽  
C. JIANU ◽  
I. JIANU

.Colloidal features [foaming capacity (FC); foam stability (FS) and foam density (FD)] of conditioning auxiliaries (additives) of plant protection active principles constitute, together with toxicity, a decisive technical index in forming administering receipts in modern ecological agriculture and foodstuff processing all during the agroalimentary processing and consumption chain. In this paper we show the results of a study on a new class of superficial active compounds salefied polyether ( = 3 – 20) primary amides. As diderived glymes, they have a guided regulation capacity of the HLB balance through the change of the medium degree of oligomerisation ( ) of the polyoxyethylene chain (PEO). Can thus obtain a wide range of structures such as micellar solute, dispersion, emulsion, and foaming agents, etc., through the cyanoethylation of polyethoxylated nonylphenols with a medium degree of oligomerisation ( ) between 3 and 20 structural oxyethylene units (EO) in alkaline catalysis with monomer acrylonitrile, followed by a classical hydrogenation in heterogeneous catalysis of intermediary nitrile thus obtained, and finally partial hysrolysis and salefied with HCOOH; CH3COOH. These are biodegradable in water plants, which ensure special ecologlcal features and high compatibility within the restrictive legal ensemble of a foodstuff processing integrated in an extremely polluted environment. Structures have real bacteriostatical abilities compared to a wide spectrum of microrganisms (tested in studies related to this paper). Low toxicity of polyoxyethylene chains (PEO) together with that of other structural units in this polyether primary amides provide the studied glymes with a high compatibility in relation to environment and to plant and animal organisms of the food chain.


Sign in / Sign up

Export Citation Format

Share Document