scholarly journals Evaluation of the Water Yield of Coal Roof Aquifers Based on the FDAHP-Entropy Method: A Case Study in the Donghuantuo Coal Mine, China

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yaowen Zhang ◽  
Lili Zhang ◽  
Haijun Li ◽  
Baoming Chi

The water yield of coal seam roof aquifers is the key factor for evaluating and controlling water disasters in coal seam roofs. To evaluate the water yield of the sandstone aquifer in the roof of the Carboniferous-Permian Damiaozhuang Formation no. 8 coal seam in the Donghuantuo Mine, North China, seven main controlling factors affecting the water yield of sandstone aquifers are determined, including the permeability coefficient, consumption of drilling fluid, core recovery, aquifer thickness, brittle-plastic rock thickness ratio, fault scale index, and fault point density. Further, the fuzzy Delphi analytic hierarchy process (FDAHP) and entropy weight method (EWM) are used to calculate the subjective and objective weights of each main factor, respectively, and a combination weight model (CWM) is proposed based on the least square method to compose the comprehensive weights. Then, an improved water yield property index (IWYPI) model is established, and the water yield zoning map of sandstone aquifers is acquired. Engineering practice shows that the evaluation accuracy of the water yield property index (IWYPI) model based on the CWM is as high as 93.75%, which is 18.75% and 12.5% higher than that of the water yield property index (WYPI) model based on the FDAHP and EWM, respectively. The research results propose a novel method for evaluating the water yield of coal seam roof aquifers and can provide scientific guidance for the prevention and control of water disasters in the no. 8 coal seam roof of the Donghuantuo Coal Mine.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yaru Guo ◽  
Shuning Dong ◽  
Yonghong Hao ◽  
Zaibin Liu ◽  
Tian-Chyi Jim Yeh ◽  
...  

With the increase in depth of coal mining, the hydrogeological complexity largely increases and water inrush accidents happen more frequently. For the safety of coal mining, horizontal directional drilling and grouting techniques have been implemented to detect and plug the fractures and conduits that deliver high-pressure groundwater to coal mine. Taking the grouting engineering performed at Xingdong coal mine at 980 m below sea level as an example, we collected the data of grouting quantity, the loss of drilling fluid, gamma value, water temperature, average water absorption, distance between grouting loss points, water pressure on coal seam floor, and aquifuge thickness at 90 boreholes in the mine to conduct grey relational analysis, first. The analysis showed that the grouting quantity was highly correlated with all other factors. Subsequently, grey system evaluation was used to evaluate the risk of water inrush from the coal seam floor. The results of risk analysis illustrated that three water inrushes from Ordovician limestone occurred in mining face 2127, 2125, and 2222 in the study area were all located in the area with a risk score higher than 65. Through grouting, the identified cracks were effectively blocked and waterproof layers beneath the coal seam floors were constructed to reduce the threat of water inrush. By comparing the risk assessment results with three water inrush cases before grouting operation, we found that water inrush areas were consistent with the area of higher risk.


2021 ◽  
Vol 2021 ◽  
pp. 1-28
Author(s):  
Meng Wang ◽  
Caiwang Tai ◽  
Qiaofeng Zhang ◽  
Zongwei Yang ◽  
Jiazheng Li ◽  
...  

Longwall top coal caving mining is one of the main methods of mining thick coal seams in China. Therefore, carrying out the classification evaluation of top coal caving is of great significance to ensure mining success and reduce the risk of mining technology. In order to realize the classification evaluation of top coal caving, this article introduces the method of using BigML to establish the classification evaluation model of top coal caving. Furthermore, using the data from the CNKI database as sample data, a classification evaluation model of top coal caving is established on BigML. After training, testing, and optimization, the model is used to evaluate the top coal caving in No. 3 coal seam of Gucheng Coal Mine, and the evaluation result is grade 1, which is consistent with the engineering practice. The final research results show that the application of BigML in the classification evaluation of top coal caving is successful; the evaluation of top coal caving through BigML is reliable; BigML provides another scientific reliability way for the classification evaluation of top coal caving.


2013 ◽  
Vol 63 (2) ◽  
pp. 271-281 ◽  
Author(s):  
Magdalena Kokowska-Pawłowska ◽  
Jacek Nowak

Abstract Kokowska-Pawłowska, M. and Nowak, J. 2013. Phosphorus minerals in tonstein; coal seam 405 at Sośnica- Makoszowy coal mine, Upper Silesia, southern Poland. Acta Geologica Polonica, 63 (2), 271-281. Warszawa. The paper presents results of research on tonstein, which constitutes an interburden in coal seam 405 at the Sośnica- Makoszowy coal mine, Makoszowy field (mining level 600 m), Upper Silesia, southern Poland. The mineral and chemical compositions of the tonstein differ from the typical compositions described earlier for tonsteins from Upper Silesia Coal Basin area. Additionally, minerals present in the tonsteins include kaolinite, quartz, kaolinitised biotite and feldspars. The presence of the phosphatic minerals apatite and goyazite has been recognized. The presence of gorceixite and crandallite is also possible. The contents of CaO (5.66 wt%) and P2O5 (6.2 wt%) are remarkably high. Analysis of selected trace elements demonstrated high contents of Sr (4937 ppm) and Ba (4300 ppm), related to the phosphatic minerals. On the basis of mineral composition the tonstein has been identified as a crystalline tonstein, transitional to a multiplied one.


1998 ◽  
Vol 37 (12) ◽  
pp. 335-342 ◽  
Author(s):  
Jacek Czeczot

This paper deals with the minimal-cost control of the modified activated sludge process with varying level of wastewater in the aerator tank. The model-based adaptive controller of the effluent substrate concentration, basing on the substrate consumption rate and manipulating the effluent flow rate outcoming from the aerator tank, is proposed and its performance is compared with conventional PI controller and open loop behavior. Since the substrate consumption rate is not measurable on-line, the estimation procedure on the basis of the least-square method is suggested. Finally, it is proved that cooperation of the DO concentration controller with the adaptive controller of the effluent substrate concentration allows the process to be operated at minimum costs (low consumption of aeration energy).


2013 ◽  
Vol 295-298 ◽  
pp. 2980-2984
Author(s):  
Xiang Qian Wang ◽  
Da Fa Yin ◽  
Zhao Ning Gao ◽  
Qi Feng Zhao

Based on the geological conditions of 6# coal seam and 8# coal seam in Xieqiao Coal Mine, to determine reasonable entry layout of lower seam in multi-seam mining, alternate internal entry layout, alternate exterior entry layout and overlapping entry layout were put forward and simulated by FLAC3D. Then stress distribution and displacement characteristics of surrounding rock were analyzed in the three ways of entry layout, leading to the conclusion that alternate internal entry layout is a better choice for multi-seam mining, for which makes the entry located in stress reduce zone and reduces the influence of abutment pressure of upper coal seam mining to a certain extent,. And the mining practice of Xieqiao Coal Mine tested the results, which will offer a beneficial reference for entry layout with similar geological conditions in multi-seam mining.


2010 ◽  
Vol 29-32 ◽  
pp. 2698-2702
Author(s):  
Xian Qi Zhang ◽  
Wen Hong Feng ◽  
Nan Nan Li

It is necessary to take into account synthetically attribute of every index because of independence and incompatibility resulted from single index evaluating outcomes. Through the information entropy theory and attribute recognition model being combined together, attribute recognition model based on entropy weight is constructed and applied to evaluating groundwater quality by a new method, weight coefficient by the law of entropy value is exercised so that it is more objective. The outcome from concrete application indicates that it is suitable to evaluate water quality with reasonable conclusion and simple calculation.


Sign in / Sign up

Export Citation Format

Share Document