scholarly journals Optimal Wireless Information and Power Transfer Using Deep Q-Network

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuan Xing ◽  
Haowen Pan ◽  
Bin Xu ◽  
Cristiano Tapparello ◽  
Wei Shi ◽  
...  

In this paper, a multiantenna wireless transmitter communicates with an information receiver while radiating RF energy to surrounding energy harvesters. The channel between the transceivers is known to the transmitter, but the channels between the transmitter and the energy harvesters are unknown to the transmitter. By designing its transmit covariance matrix, the transmitter fully charges the energy buffers of all energy harvesters in the shortest amount of time while maintaining the target information rate toward the receiver. At the beginning of each time slot, the transmitter determines the particular beam pattern to transmit with. Throughout the whole charging process, the transmitter does not estimate the energy harvesting channel vectors. Due to the high complexity of the system, we propose a novel deep Q-network algorithm to determine the optimal transmission strategy for complex systems. Simulation results show that deep Q-network is superior to the existing algorithms in terms of the time consumption to fulfill the wireless charging process.

Author(s):  
Ali Ghiasian ◽  
Majid Jamali

<span>Virtual Output Queuing (VOQ) is a well-known queuing discipline in data switch architecture that eliminates Head Of Line (HOL) blocking issue. In VOQ scheme, for each output port, a separate FIFO is maintained by each input port. Consequently, a scheduling algorithm is required to determine the order of service to virtual queues at each time slot. Maximum Weight Matching (MWM) is a well-known scheduling algorithm that achieves the entire throughput region. Despite of outstanding attainable throughput, high complexity of MWM makes it an impractical algorithm for implementation in high-speed switches. To overcome this challenge, a number of randomized algorithms have been proposed in the literature. But they commonly perform poorly when input traffic does not uniformly select output ports. In this paper, we propose two randomized algorithms that outperform the well-known formerly proposed solutions. We exploit a method to keep a parametric number of heavy edges from the last time matching and mix it by randomly generated matching to produce a new schedule. Simulation results confirm the superior performance of the proposed algorithms.</span>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Faiz Basheer ◽  
Elmehaisi Mehaisi ◽  
Ahmed Elsergany ◽  
Ahmed ElSheikh ◽  
Mehdi Ghommem ◽  
...  

AbstractAn exclusive reliance on batteries for miniature sensors has created the need for a self-sustained energy harvester to enable permanent power. This work introduces a pendulum-based energy harvester that is capable of harnessing kinetic energy from rotating structures to generate electric power through electromagnetic transduction. A computational model of the energy harvesting device is developed on Simscape to compute, analyze and compare the power generation capacities of the single, double and Rott’s pendulum systems. Simulation results are validated against their experimental counterparts reported in the literature. Results show an increase in the output voltage in a specific range of rotational speed for all three pendulum harvesters. The double pendulum exhibits the highest power generation potential among the simulated pendulum arrangements. A parametric study revealed that increasing the damping of the harvester decreased its output power, whereas an increase in mass and length of the harvester is observed to increase the output power and shift the optimal power generation subrange.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2347
Author(s):  
Yanyan Wang ◽  
Lin Wang ◽  
Ruijuan Zheng ◽  
Xuhui Zhao ◽  
Muhua Liu

In smart homes, the computational offloading technology of edge cloud computing (ECC) can effectively deal with the large amount of computation generated by smart devices. In this paper, we propose a computational offloading strategy for minimizing delay based on the back-pressure algorithm (BMDCO) to get the offloading decision and the number of tasks that can be offloaded. Specifically, we first construct a system with multiple local smart device task queues and multiple edge processor task queues. Then, we formulate an offloading strategy to minimize the queue length of tasks in each time slot by minimizing the Lyapunov drift optimization problem, so as to realize the stability of queues and improve the offloading performance. In addition, we give a theoretical analysis on the stability of the BMDCO algorithm by deducing the upper bound of all queues in this system. The simulation results show the stability of the proposed algorithm, and demonstrate that the BMDCO algorithm is superior to other alternatives. Compared with other algorithms, this algorithm can effectively reduce the computation delay.


Clean Energy ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 196-207
Author(s):  
Shoichi Sato ◽  
Yasuhiro Noro

Abstract The introduction of large-scale renewable energy requires a control system that can operate multiple distributed inverters in a stable way. This study proposes an inverter control method that uses information corresponding to the inertia of the synchronous generator to coordinate the operation of battery energy storage systems. Simulation results for a system with multiple inverters applying the control method are presented. Various faults such as line-to-line short circuits and three-phase line-to-ground faults were simulated. Two fault points with different characteristics were compared. The voltage, frequency and active power quickly returned to their steady-state values after the fault was eliminated. From the obtained simulation results, it was verified that our control method can be operated stably against various faults.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shabana Urooj ◽  
Norah Muhammad Alwadai ◽  
Vishal Sorathiya ◽  
Sunil Lavadiya ◽  
Juveriya Parmar ◽  
...  

Abstract This article has indicated optical coherent differential polarization (DP) 16 quadrature amplitude modulation (QAM) transceiver systems with free-space optical (FSO) channel in the presence of differential coding scheme. The optical coherent DP 16-QAM receiver executes the reverse process conversion of the optical signal into an electrical one that is detected to the users. The proposed optical coherent DP-16 QAM transceiver systems based FSO channel model with differential coding has been presented and compared with the previous model. However, the simulation results have confidence realization about the superiority of the proposed simulation model. Hence the proposed optical coherent DP-16 QAM transceiver systems simulation model with differential coding is verified and validated the enhancement performance based on simulation performance parameters.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3528
Author(s):  
Zhe Zhang ◽  
Liang Zhou ◽  
Junyi Du ◽  
Yue Zhao

It is very challenging to design the capacity-approaching labeling schemes for large constellations, such as 32-QAM, in delayed bit-interleaved coded modulation (DBICM). In this paper, we investigate the labeling design for 32-QAM DBICM with various numbers of bits delayed by one time slot. In particular, we aim to obtain the labeling schemes with a high DBICM channel capacity by searching the possible labeling schemes. To reduce the search space of the candidate labeling schemes, we propose the criteria that are necessary for good labeling. Based on the proposed criteria, a three-step search algorithm is proposed to obtain the candidate labeling efficiently. Numerical results demonstrate that the DBICM with our proposed labeling scheme can approach the capacity of 32-QAM within 0.015 dB at an information rate greater than 2.5 bits/symbol.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2049
Author(s):  
Congyu Shi ◽  
Gaoyuan Zhang ◽  
Haiqiong Li ◽  
Congzheng Han ◽  
Jie Tang ◽  
...  

In this work, an implementation-friendly multiple-symbol detection (MSD) scheme is proposed for the IEEE 802.15.4g offset quadrature phase shift keying (O-QPSK) receivers over the slow fading channel. The full MSD scheme presents better detection performance than the symbol-by-symbol detection (SBSD) scheme, yet its complexity increases exponentially as the observation window length increases. We introduce a simplified MSD scheme based on two powerful strategies. We first seek the optimal and suboptimal decisions in each symbol position with the standard SBSD procedure. Then, the aforementioned optimal and suboptimal decisions instead of all candidates are jointly searched with the standard MSD procedure. That is, only the most and second most reliable candidates in each symbol position are selected to participate in the final detection. The simulation results demonstrate that the new MSD scheme can achieve more encouraging energy gain than the SBSD scheme, while the high complexity of full MSD is also effectively reduced. A more legitimate compromise between detection performance and complexity is thus accomplished, which enables smart metering utility networks (SUN) nodes to achieve energy saving and maximum service life.


Author(s):  
Seyed Hasan Miri Roknabadi ◽  
Mohamad Fakhari Mehrjardi ◽  
Mehran Mirshams

This paper presents an optimal attitude maneuver by Reaction Wheels to achieve desired attitude for a Satellite. At first, Dynamic Equations of motion for a satellite with just three Reaction Wheels of its active actuators are educed, and then State Equations of this system are obtained. An optimal attitude control with the LQR method has exerted for a distinct satellite by its Reaction Wheels. As a result simulation has presented an optimal effort by calculated Gain matrix to achieve desired attitude for chosen Satellite. It shows that satellite becomes stable in desired attitude with a low energy and time consumption. Furthermore equations derivation, coupling of electrical Reaction Wheel equations with dynamic equations of satellite motion, linearizes them and Reaction wheel saturation avoidance approaches are innovative. Simulation results, accuracy of achieving desired attitude and satellite stability support this statement.


2014 ◽  
Vol 577 ◽  
pp. 1017-1021
Author(s):  
Hong Zhuo Wang ◽  
Zheng Hai Sun ◽  
Jun Wang ◽  
Fang Liu

In the paper, the resource scheduling algorithm in the downlink of LTE-Advanced (LTE-A) assuming equal power allocation among subcarriers which adopted the technology of carrier aggregation (CA) is investigated. When the independent scheduling (INS) scheme is applied, the LTE users will acquire few resources because they cannot support CA technology. And the fairness of the system is disappointing. Focusing on the problem, a novel proportional fair (PF) scheduling algorithm based on INS is proposed. In the proposed method, the system fairness is well improved without bringing high complexity to the system. And also, we design a weigh factor which is related to the number of the carriers and the percentage of LTE users in the method. The simulation results show that the proposed algorithm can effectively increase the throughput of LTE users and improve the system fairness.


Sign in / Sign up

Export Citation Format

Share Document