scholarly journals Network Pharmacology-Based Systematic Analysis of Molecular Mechanisms of Dingji Fumai Decoction for Ventricular Arrhythmia

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yi Liang ◽  
Bo Liang ◽  
Xin-Rui Wu ◽  
Wen Chen ◽  
Li-Zhi Zhao

Background. Dingji Fumai Decoction (DFD), a traditional herbal mixture, has been widely used to ventricular arrhythmia (VA) in clinical practice in China. However, research on the bioactive components and underlying mechanisms of DFD in VA is still scarce. Methods. Components of DFD were collected from TCMSP, ETCM, and literature. The chemical structures of each component were obtained from PubChem. Next, SwissADME and SwissTargetPrediction were applied for compounds screening and targets prediction of DFD; meanwhile, targets of VA were collected from DrugBank and Online Mendelian Inheritance in Man (OMIM). Then, the H-C-T-D network and the protein-protein interaction (PPI) network were constructed based on the data obtained above. CytoNCA was utilized to filter hub genes and VarElect was used to analyze the relationship between genes and diseases. At last, Metascape was employed for systematic analysis on the potential targets of herbals against VA, and AutoDock was applied for molecular docking to verify the results. Results. A total of 434 components were collected, 168 of which were qualified, and there were 28 shared targets between DFD and VA. Three function modules of DFD were found from the PPI network. Further systematic analysis of shared genes and function modules explained the potential mechanism of DFD in the treatment of VA; molecular docking has verified the interactions. Conclusions. DFD could be employed for VA through mechanisms, including complex interactions between related components and targets, as predicted by network pharmacology and molecular docking. This work confirmed that DFD could apply to the treatment of VA and promoted the explanation of DFD for VA in the molecular mechanisms.

2020 ◽  
Author(s):  
Yi Liang ◽  
Bo Liang ◽  
Rui Xin Wu ◽  
Wen Chen ◽  
Li-zhi ZHAO

Abstract Background: Dingji Fumai decoction (DFD), a traditional herbal mixture, has been widely used to ventricular arrhythmia (VA) in clinical practice in China. However, research on the bioactive components and underlying mechanisms of DFD in VA is still scarce. Methods: Components of DFD were collected from TCMSP, ETCM, and literature. Then, the chemical structures of each component were obtained from PubChem. Next, SwissADME and SwissTargetPrediction were applied for compounds screening and targets prediction of DFD, meanwhile, targets of VA were collected from DrugBank and OMIM. Then, the H-C-T-D network as well as the PPI network were constructed based on the data obtained above. CytoNCA was utilized to filter hub genes and VarElect was used to analyze the relationship between genes and diseases. At last, Metascape was employed for systematic analysis on the potential targets of herbals against VA, and AutoDock was applied for molecular docking to verify the results.Results: A total of 434 components were collected, 168 of which were qualified, and there were 28 shared targets between DFD and VA. Three function modules of DFD were found from the PPI network. Further systematic analysis of shared genes and function modules explained the potential mechanism of DFD in the treatment of VA, molecular docking has verified the interactions. Conclusions: DFD could be employed for VA through mechanisms, including complex interactions between related components and targets, as predicted by network pharmacology and molecular docking. This work confirmed DFD could apply for the treatment of VA and promoted the explaining of DFD for VA in the molecular mechanisms.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Liangjun Yang ◽  
Haiwen Li ◽  
Maoyi Yang ◽  
Weijian Zhang ◽  
Mianli Li ◽  
...  

Background. Kaempferol is a natural polyphenol in lots of Chinese herbs, which has shown promising treatment for gastric cancer (GC). However, the molecular mechanisms of its action have not been systematically revealed yet. In this work, a network pharmacology approach was used to elucidate the potential mechanisms of kaempferol in the treatment of GC. Methods. The kaempferol was input into the PharmMapper and SwissTargetPrediction database to get its targets, and the targets of GC were obtained by retrieving the Online Mendelian Inheritance in Man (OMIM) database, MalaCards database, Therapeutic Target Database (TTD), and Coolgen database. The molecular docking was performed to assess the interactions between kaempferol and these targets. Next, the overlap targets of kaempferol and GC were identified for GO and KEGG enrichment analyses. Afterward, a protein-protein interaction (PPI) network was constructed to get the hub targets, and the expression and overall survival analysis of the hub target were investigated. Finally, the overall survival (OS) analysis of hub targets was performed using the Kaplan-Meier Plotter online tool. Results. A total of 990 genes related to GC and 10 overlapping genes were determined through matching the 24 potential targets of kaempferol with disease-associated genes. The result of molecular docking indicated that kaempferol can bind with these hub targets with good binding scores. These targets were further mapped to 140 GO biological process terms and 11 remarkable pathways. In the PPI network analysis, 3 key targets were identified, including ESR1, EGFR, and SRC. The mRNA and protein expression levels of EGFR and SRC were obviously higher in GC tissues. High expression of these targets was related to poor OS in GC patients. Conclusions. This study provided a novel approach to reveal the therapeutic mechanisms of kaempferol on GC, which will ease the future clinical application of kaempferol in the treatment of GC.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hao Zhang ◽  
Ming-Huang Gao ◽  
Yang Chen ◽  
Tao Liu

Background. Being a traditional Chinese medicine, Geranium wilfordii Maxim (GWM) is used for the treatment of various infectious diseases, and its main active ingredients are the polyphenolic substances such as polyphenols quercetin, corilagin, and geraniin. Previous studies have demonstrated the anti-HSV-1 viral activity of these three main ingredients. Through employing a network pharmacological method, the authors of the present research intend to probe the mechanism of GWM for the therapeutic treatment of HSV-2 infection. Methods. The bioactive substances and related targets of GWM were obtained from the TCMSP database. Gene expression discrepancy for HSV-2 infection was obtained from dataset GSE18527. Crossover genes between disease target genes and GWM target genes were gained via Circos package. Distinctively displayed genes (DDGs) during HSV-2 infection were uploaded to the Metascape database with GWM target genes for further analysis. The tissue-specific distribution of the genes was obtained by uploading the genes to the PaGenBase database. Ingredient-gene-pathway (IGP) networks were constructed using Cytoscape software. Molecular docking investigations were carried out utilizing AutoDock Vina software. Results. Nine actively involved components were retrieved from the TCMSP database. After taking the intersection among 153 drug target genes and 83 DDGs, 7 crossover genes were screened. Gene enrichment analysis showed that GWM treatment of HSV-2 infection mainly involves cytokine signaling in the immune system, response to virus, epithelial cell differentiation, and type II interferon signaling (IFNG). One hub, three core objectives, and two critical paths were filtered out from the built network. Geraniin showed strong binding activity with HSV-2 gD protein and STING protein in molecular docking. Conclusions. This network pharmacological study provides a fundamental molecular mechanistic exploration of GWM for the treatment of HSV-2 infection.


2020 ◽  
Author(s):  
Li-Li Zhang ◽  
Lin Han ◽  
Xin-Miao Wang ◽  
Yu Wei ◽  
Jing-Hui Zheng ◽  
...  

Abstract BackgroundThe mechanisms underlying the therapeutic effect of Salvia Miltiorrhiza (SM) against diabetic nephropathy (DN) using systematic network pharmacology and molecular docking methods were examined.MethodsTCMSP database was used to screen the active ingredients of SM. Gene targets were obtained using Swiss Target Prediction and TCMSP databases. Related targets of DN were retrieved from the Genecards and DisGeNET databases. Next, a PPI network was constructed using the common targets of SM-DN in the STRING database. The Metascape platform was used for GO function analysis and Cytoscape plug-in ClueGO was used for KEGG pathway enrichment analysis. Molecular docking was performed using iGEMDOCK and AutoDock Vina software. Pymol and LigPlos were used for mapping the network. ResultsSixty-six active ingredients and 189 targets were screened from SM. Among them, 64 targets overlapped with DN targets. The PPI network diagram revealed that AKT1, VEGFA, IL6, TNF, MAPK1, TP53, EGFR, STAT3, MAPK14, and JUN were the top 10 relevant targets. GO and KEGG analyses mainly focused on advanced glycation end products, oxidative stress, inflammatory response, and immune regulation. Molecular docking revealed that the potential target genes closely related to DN, including TNF, NOS2, and AKT1, were more stable in combination with salvianolic acid B, and their stability was better than that of tanshinone IIA.ConclusionThis study reveals the active components and potential molecular mechanisms involved in the therapeutic effect of SM against DN and provides a reference for the wide application of SM in clinically managing DN.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Guang-yao Chen ◽  
Xiao-yu Liu ◽  
Jia-qi Chen ◽  
Xin-bo Yu ◽  
Jing Luo ◽  
...  

Rhizoma Drynariae has been widely used for the treatment of osteoarthritis (OA), but its potential targets and molecular mechanisms remain to be further explored. Targets of Rhizoma Drynariae and OA were predicted by relevant databases, and a protein-protein interaction (PPI) network was constructed to identify key targets. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to obtain related pathways and then select significant pathways associated with OA. The OA chondrocyte model was established by inflammatory factor-induced SW1353 chondrocytes, and molecular docking was conducted to verify the above theoretical prediction. The results showed that a total of 86 Rhizoma Drynariae-OA interaction targets were identified, among which IL-6 and AKT1 were the key targets in the PPI network. Luteolin was the most critical component of Rhizoma Drynariae. KEGG results indicated that the effects of Rhizoma Drynariae on OA are associated with the PI3K/AKT, TNF, IL-17, apoptosis, and HIF-1 signaling pathway. The PI3K/AKT pathway can activate the downstream NF-κB pathway and further regulate the transcription and expression of downstream IL-6, IL-17, HIF-1α, Bax, and TNF, suggesting that the PI3K/AKT/NF-κB pathway is the critical pathway in the treatment of OA with Rhizoma Drynariae. Active components of Rhizoma Drynariae and key proteins of the PI3K/AKT/NF-κB signaling pathway were subjected to molecular docking, whose results showed that luteolin and IKK-α played a critical role. In vitro experiments indicated that both aqueous extracts of Rhizoma Drynariae (AERD) and luteolin inhibited the expression of IL-6 and HIF-1α and suppressed the activation of PI3K/AKT/NF-κB, IL-17, and TNF pathways. The measurement of mitochondrial membrane potential (Δψm) indicated that AERD and luteolin can decrease the LPS-induced early apoptotic cells. Luteolin had a more prominent inhibitory effect than AERD in the abovementioned in vitro experiments. In conclusion, the therapeutic mechanism of Rhizoma Drynariae against OA may be closely related to the inhibition of the PI3K/AKT/NF-κB pathway and downstream pathways, and luteolin plays a vital role in the treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Rong Tang ◽  
Xiaoqing Peng ◽  
Yan Wang ◽  
Xiaohong Zhou ◽  
Hong Liu

This study used a network pharmacology approach to investigate the potential active ingredients of Plantaginis Herba and its underlying mechanisms in hyperuricemia treatment. The potential active ingredients of Plantaginis Herba were obtained from TCMSP and ETCM databases, and the potential targets of the active ingredients were predicted using the Swiss TargetPrediction database. The potential therapeutic targets of hyperuricemia were retrieved from the GeneCards, DisGeNET, and Online Mendelian Inheritance in Man (OMIM) databases. Then, the integrative bioinformatics analyses of candidates were performed by GO analysis, KEGG analysis, and PPI network construction. There were 15 predicted active ingredients in Plantaginis Herba and 41 common targets that may be involved in the treatment of hyperuricemia. A total of 61 GO annotations and 35 signaling pathways were identified by enrichment analysis ( P < 0.01 ). The underlying mechanisms of Plantaginis Herba may be related to insulin resistance, PI3K/AKT, TNF, VEGF, AMPK, and glucagon signaling pathways. Thus, the present study provided potential and promising strategies of Plantaginis Herba for hyperuricemia treatment.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Biting Wang ◽  
Zengrui Wu ◽  
Weihua Li ◽  
Guixia Liu ◽  
Yun Tang

Abstract Background The traditional Chinese medicine Huangqi decoction (HQD) consists of Radix Astragali and Radix Glycyrrhizae in a ratio of 6: 1, which has been used for the treatment of liver fibrosis. In this study, we tried to elucidate its action of mechanism (MoA) via a combination of metabolomics data, network pharmacology and molecular docking methods. Methods Firstly, we collected prototype components and metabolic products after administration of HQD from a publication. With known and predicted targets, compound-target interactions were obtained. Then, the global compound-liver fibrosis target bipartite network and the HQD-liver fibrosis protein–protein interaction network were constructed, separately. KEGG pathway analysis was applied to further understand the mechanisms related to the target proteins of HQD. Additionally, molecular docking simulation was performed to determine the binding efficiency of compounds with targets. Finally, considering the concentrations of prototype compounds and metabolites of HQD, the critical compound-liver fibrosis target bipartite network was constructed. Results 68 compounds including 17 prototype components and 51 metabolic products were collected. 540 compound-target interactions were obtained between the 68 compounds and 95 targets. Combining network analysis, molecular docking and concentration of compounds, our final results demonstrated that eight compounds (three prototype compounds and five metabolites) and eight targets (CDK1, MMP9, PPARD, PPARG, PTGS2, SERPINE1, TP53, and HIF1A) might contribute to the effects of HQD on liver fibrosis. These interactions would maintain the balance of ECM, reduce liver damage, inhibit hepatocyte apoptosis, and alleviate liver inflammation through five signaling pathways including p53, PPAR, HIF-1, IL-17, and TNF signaling pathway. Conclusions This study provides a new way to understand the MoA of HQD on liver fibrosis by considering the concentrations of components and metabolites, which might be a model for investigation of MoA of other Chinese herbs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingxu Zhang ◽  
Jiawei Yang ◽  
Xiulan Zhao ◽  
Ying Zhao ◽  
Siquan Zhu

AbstractDiabetic retinopathy (DR) is a leading cause of irreversible blindness globally. Qidengmingmu Capsule (QC) is a Chinese patent medicine used to treat DR, but the molecular mechanism of the treatment remains unknown. In this study, we identified and validated potential molecular mechanisms involved in the treatment of DR with QC via network pharmacology and molecular docking methods. The results of Ingredient-DR Target Network showed that 134 common targets and 20 active ingredients of QC were involved. According to the results of enrichment analysis, 2307 biological processes and 40 pathways were related to the treatment effects. Most of these processes and pathways were important for cell survival and were associated with many key factors in DR, such as vascular endothelial growth factor-A (VEGFA), hypoxia-inducible factor-1A (HIF-1Α), and tumor necrosis factor-α (TNFα). Based on the results of the PPI network and KEGG enrichment analyses, we selected AKT1, HIF-1α, VEGFA, TNFα and their corresponding active ingredients for molecular docking. According to the molecular docking results, several key targets of DR (including AKT1, HIF-1α, VEGFA, and TNFα) can form stable bonds with the corresponding active ingredients of QC. In conclusion, through network pharmacology methods, we found that potential biological mechanisms involved in the alleviation of DR by QC are related to multiple biological processes and signaling pathways. The molecular docking results also provide us with sound directions for further experiments.


2021 ◽  
Author(s):  
Jing Yang ◽  
Chao-Tao Tang ◽  
Ruiri Jin ◽  
Bixia Liu ◽  
Peng Wang ◽  
...  

Abstract Huanglian jiedu decoction (HLJDD) is a heat-clearing and detoxifying agent composed of four kinds of Chinese herbal medicine. Previous studies have shown that HLJDD can improve the inflammatory response of ulcerative colitis (UC) and maintain intestinal barrier function. However, its molecular mechanism is not completely clear. In this study, we verified the bioactive components (BCI) and potential targets of HLJDD in the treatment of UC by means of network pharmacology and molecular docking, and constructed the pharmacological network and PPI network. Then the core genes were enriched by GO and KEGG. Finally, the bioactive components were docked with the key targets to verify the binding ability between them. A total of 54 active components related to UC were identified. Ten genes are considered to be very important to PPI network. Functional analysis showed that these target genes were mainly involved in the regulation of cell response to different stimuli, IL-17 signal pathway and TNF signal pathway. The results of molecular docking showed that the active components of HLJDD had good affinity with Hub gene. This study systematically elucidates the "multi-component, multi-target, multi-pathway" mechanism of anti-UC with HLJDD for the first time, suggesting that HLJDD or its active components may be candidate drugs for the treatment of ulcerative colitis.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Qiushuang Sheng ◽  
Runbao Du ◽  
Cunhui Ma ◽  
Yonglin Zhou ◽  
Xue Shen ◽  
...  

Abstract Background The wide spread of plasmid-mediated colistin resistance by mobile colistin resistance (MCR) in Enterobacteriaceae severely limits the clinical application of colistin as a last-line drug against bacterial infection. The identification of colistin potentiator from natural plants or their compound preparation as antibiotic adjuncts is a new promising strategy to meet this challenge. Methods Herein, the synergistic activity, as well as the potential mechanism, of Pingwei pill plus antibiotics against MCR-positive Gram-negative pathogens was examined using checkerboard assay, time-killing curves, combined disk test, western blot assay, and microscope analysis. Additionally, the Salmonella sp. HYM2 infection models of mouse and chick were employed to examine the in vivo efficacy of Pingwei pill in combination with colistin against bacteria infection. Finally, network pharmacology and molecular docking assay were used to predicate other actions of Pingwei pill for Salmonella infection. Results Our results revealed that Pingwei Pill synergistically potentiated the antibacterial activity of colistin against MCR-1-positive bacteria by accelerating the damage and permeability of the bacterial outer membrane with an FIC (Fractional Inhibitory Concentration) index less than 0.5. The treatment of Pingwei Pill neither inhibited bacterial growth nor affected MCR production. Notably, Pingwei Pill in combination with colistin significantly prolonged the median survival in mouse and chick models of infection using the Salmonella sp. strain HYM2, decreased bacteria burden and organ index of infected animal, alleviated pathological damage of cecum, which suggest that Pingwei Pill recovered the therapeutic performance of colistin for MCR-1- positive Salmonella infection in mice and the naturally infected host chick. Pharmacological network topological analysis, molecular docking, bacterial adhesion, and invasion pathway verification assays were performed to identify the other molecular mechanisms of Pingwei Pill as a colistin potentiator against Gram-negative bacteria infection. Conclusion Taken together, NMPA (National Medical Products Administration)-approved Pingwei Pill is a promising adjuvant with colistin for MCR-positive bacterial infection with a shortened R&D (research and development) cycle and affordable R&D cost and risk.


Sign in / Sign up

Export Citation Format

Share Document