scholarly journals Speed Proportional Integrative Derivative Controller: Optimization Functions in Metaheuristic Algorithms

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Luis Fernando de Mingo López ◽  
Francisco Serradilla García ◽  
José Eugenio Naranjo Hernández ◽  
Nuria Gómez Blas

Recent advancements in computer science include some optimization models that have been developed and used in real applications. Some metaheuristic search/optimization algorithms have been tested to obtain optimal solutions to speed controller applications in self-driving cars. Some metaheuristic algorithms are based on social behaviour, resulting in several search models, functions, and parameters, and thus algorithm-specific strengths and weaknesses. The present paper proposes a fitness function on the basis of the mathematical description of proportional integrative derivate controllers showing that mean square error is not always the best measure when looking for a solution to the problem. The fitness developed in this paper contains features and equations from the mathematical background of proportional integrative derivative controllers to calculate the best performance of the system. Such results are applied to quantitatively evaluate the performance of twenty-one optimization algorithms. Furthermore, improved versions of the fitness function are considered, in order to investigate which aspects are enhanced by applying the optimization algorithms. Results show that the right fitness function is a key point to get a good performance, regardless of the chosen algorithm. The aim of this paper is to present a novel objective function to carry out optimizations of the gains of a PID controller, using several computational intelligence techniques to perform the optimizations. The result of these optimizations will demonstrate the improved efficiency of the selected control schema.

2016 ◽  
Vol 78 (7-4) ◽  
Author(s):  
Norhayati A. Majid ◽  
Z. Mohamed ◽  
Mohd Ariffanan Mohd Basri

A unicycle model of control a mobile robot is a simplified modeling approach modified from the differential drive mobile robots. Instead of controlling the right speed,  and the left speed,  of the drive systems, the unicycle model is using  and  as the controller parameters. Tracking is much easier in this model. In this paper, the dynamic of the robot parameter is controlled using two blocks of Proportional-Integral-Derivative (PID) controllers. The gains of the PID are firstly determined using particle swarm optimization (PSO) in offline mode. After the optimal gain is determined, the tracking of the robot’s trajectory is performed online with optimal PID controller. The achieved results of the proposed scheme are compared with those of dynamic model optimized with genetic algorithm (GA) and manually tuned PID controller gains. In the algorithm, the control parameters are computed by minimizing the fitness function defined by using the integral absolute error (IAE) performance index. The simulation results obtained reveal advantages of the proposed PSO-PID dynamic controller for trajectory tracking of a unicycle type of mobile robot. A MATLAB-Simulink program is used to simulate the designed system and the results are graphically plotted. In addition, numerical simulations using 8-shape as a reference trajectory with several numbers of iterations are reported to show the validity of the proposed scheme.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Muharrem Selim Can ◽  
Hamdi Ercan

Purpose This study aims to develop a quadrotor with a robust control system against weight variations. A Proportional-Integral-Derivative (PID) controller based on Particle Swarm Optimization and Differential Evaluation to tune the parameters of PID has been implemented with real-time simulations of the quadrotor. Design/methodology/approach The optimization algorithms are combined with the PID control mechanism of the quadrotor to increase the performance of the trajectory tracking for a quadrotor. The dynamical model of the quadrotor is derived by using Newton-Euler equations. Findings In this study, the most efficient control parameters of the quadrotor are selected using evolutionary optimization algorithms in real-time simulations. The control parameters of PID directly affect the controller’s performance that position error and stability improved by tuning the parameters. Therefore, the optimization algorithms can be used to improve the trajectory tracking performance of the quadrotor. Practical implications The online optimization result showed that evolutionary algorithms improve the performance of the trajectory tracking of the quadrotor. Originality/value This study states the design of an optimized controller compared with manually tuned controller methods. Fitness functions are defined as a custom fitness function (overshoot, rise-time, settling-time and steady-state error), mean-square-error, root-mean-square-error and sum-square-error. In addition, all the simulations are performed based on a realistic simulation environment. Furthermore, the optimization process of the parameters is implemented in real-time that the proposed controller searches better parameters with real-time simulations and finds the optimal parameter online.


2021 ◽  
Vol 54 (1) ◽  
pp. 175-185
Author(s):  
Zemmit Abderrahim ◽  
Herraguemi Kamel Eddine ◽  
Messalti Sabir

In this work, we have developed two new intelligent maximum power point tracking (MPPT) techniques for photovoltaic (PV) solar systems. To optimize the PWM duty cycle driving the DC/DC boost converter, we have used two optimization algorithms namely the whale optimization algorithm (WOA) and grey wolf optimization (GWO) so we can tune the PID controller gains. The oscillation around the MPP and the fail accuracy under fast variable isolation are among the well-known drawbacks of conventional MPPT algorithms. To overcome these two drawbacks, we have formulated a new objective fitness function that includes WOA/GWO based accuracy, ripple, and overshoot. To provide the most relevant variable step size, this objective fitness function was optimized using the two aforementioned optimization algorithms (i.e., WOA and GWO). We have carried out several tests on Solarex MSX-150 panel and DC/DC boost converter based PV systems. In the simulation results section, we can clearly see that the two proposed algorithms perform better than the conventional ones in term of power overshoot, ripple and the response time.


Author(s):  
Umit Can ◽  
Bilal Alatas

The classical optimization algorithms are not efficient in solving complex search and optimization problems. Thus, some heuristic optimization algorithms have been proposed. In this paper, exploration of association rules within numerical databases with Gravitational Search Algorithm (GSA) has been firstly performed. GSA has been designed as search method for quantitative association rules from the databases which can be regarded as search space. Furthermore, determining the minimum values of confidence and support for every database which is a hard job has been eliminated by GSA. Apart from this, the fitness function used for GSA is very flexible. According to the interested problem, some parameters can be removed from or added to the fitness function. The range values of the attributes have been automatically adjusted during the time of mining of the rules. That is why there is not any requirements for the pre-processing of the data. Attributes interaction problem has also been eliminated with the designed GSA. GSA has been tested with four real databases and promising results have been obtained. GSA seems an effective search method for complex numerical sequential patterns mining, numerical classification rules mining, and clustering rules mining tasks of data mining.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3385
Author(s):  
Erickson Puchta ◽  
Priscilla Bassetto ◽  
Lucas Biuk ◽  
Marco Itaborahy Filho ◽  
Attilio Converti ◽  
...  

This work deals with metaheuristic optimization algorithms to derive the best parameters for the Gaussian Adaptive PID controller. This controller represents a multimodal problem, where several distinct solutions can achieve similar best performances, and metaheuristics optimization algorithms can behave differently during the optimization process. Finding the correct proportionality between the parameters is an arduous task that often does not have an algebraic solution. The Gaussian functions of each control action have three parameters, resulting in a total of nine parameters to be defined. In this work, we investigate three bio-inspired optimization methods dealing with this problem: Particle Swarm Optimization (PSO), the Artificial Bee Colony (ABC) algorithm, and the Whale Optimization Algorithm (WOA). The computational results considering the Buck converter with a resistive and a nonlinear load as a case study demonstrated that the methods were capable of solving the task. The results are presented and compared, and PSO achieved the best results.


2021 ◽  
Vol 11 (10) ◽  
pp. 4382
Author(s):  
Ali Sadeghi ◽  
Sajjad Amiri Doumari ◽  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Pavel Trojovský ◽  
...  

Optimization is the science that presents a solution among the available solutions considering an optimization problem’s limitations. Optimization algorithms have been introduced as efficient tools for solving optimization problems. These algorithms are designed based on various natural phenomena, behavior, the lifestyle of living beings, physical laws, rules of games, etc. In this paper, a new optimization algorithm called the good and bad groups-based optimizer (GBGBO) is introduced to solve various optimization problems. In GBGBO, population members update under the influence of two groups named the good group and the bad group. The good group consists of a certain number of the population members with better fitness function than other members and the bad group consists of a number of the population members with worse fitness function than other members of the population. GBGBO is mathematically modeled and its performance in solving optimization problems was tested on a set of twenty-three different objective functions. In addition, for further analysis, the results obtained from the proposed algorithm were compared with eight optimization algorithms: genetic algorithm (GA), particle swarm optimization (PSO), gravitational search algorithm (GSA), teaching–learning-based optimization (TLBO), gray wolf optimizer (GWO), and the whale optimization algorithm (WOA), tunicate swarm algorithm (TSA), and marine predators algorithm (MPA). The results show that the proposed GBGBO algorithm has a good ability to solve various optimization problems and is more competitive than other similar algorithms.


Author(s):  
Mahdieh Adeli ◽  
Hassan Zarabadipoor

In this paper, anti-synchronization of discrete chaotic system based on optimization algorithms are investigated. Different controllers have been used for anti-synchronization of two identical discrete chaotic systems. A proportional-integral-derivative (PID) control is used and its parameters is tuned by the four optimization algorithms, such as genetic algorithm (GA), particle swarm optimization (PSO), modified particle swarm optimization (MPSO) and improved particle swarm optimization (IPSO). Simulation results of these optimization methods to determine the PID controller parameters to anti-synchronization of two chaotic systems are compared. Numerical results show that the improved particle swarm optimization has the best result.


Sign in / Sign up

Export Citation Format

Share Document