scholarly journals An Optimal DoS Attack Strategy Disturbing the Distributed Economic Dispatch of Microgrid

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yihe Wang ◽  
Mingli Zhang ◽  
Kun Song ◽  
Tie Li ◽  
Na Zhang

As a promising method with excellent characteristics in terms of resilience and dependability, distributed methods are gradually used in the field of energy management of microgrid. However, these methods have more stringent requirements on the working conditions, which will make the system more sensitive to communication failures and cyberattacks. As a result, it is both theoretical merits and practical values to investigate the malicious effect of cyber attacks on microgrid. This paper studies the distributed economic dispatch problem (EDP) under denial-of-service (DoS) attacks for the microgrid, in which each generator can communicate with its neighbors and has the computational capability to implement local operation. Firstly, a DoS attack model is proposed, in which the DoS attacker intentionally jams the communication channel to deteriorate the performance of the microgrid. Then, the evolution mechanism of the dispatch system of the microgrid under different attack scenarios is adequately discussed. On this basis, an optimal attack strategy based on enumerating-search algorithm is presented to allocate the limited attack resources reasonably, so as to maximize the effect of DoS attacks. Finally, the validity of the theoretical studies about the attack effect under different scenarios and the effectiveness of the proposed enumerating-search-based optimal attack strategy are illustrated through the simulation examples on the IEEE 57-bus system and IEEE 39-bus system, respectively.

2012 ◽  
Vol 4 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Simona Ramanauskaitė ◽  
Antanas Čenys

Preparation for potential threats is one of the most important phases ensuring system security. It allows evaluating possible losses, changes in the attack process, the effectiveness of used countermeasures, optimal system settings, etc. In cyberattack cases, executing real experiments can be difficult for many reasons. However, mathematical or programming models can be used instead of conducting experiments in a real environment. This work proposes a composite denial of service attack model that combines bandwidth exhaustion, filtering and memory depletion models for a more real representation of similar cyber-attacks. On the basis of the introduced model, different experiments were done. They showed the main dependencies of the influence of attacker and victim’s properties on the success probability of denial of service attack. In the future, this model can be used for the denial of service attack or countermeasure optimization. Santrauka Siekiant užkirsti kelią bet kokioms sistemų saugumo grėsmėms, vienas iš svarbiausių uždavinių yra prevencija. Tai leidžia numatyti galimus pavojus ir kovos su jais būdus, nustatyti jų efektyvumą ir pan. Tačiau realiai eksperimentuoti su turima sistema dažnai gali būti pernelyg sudėtinga, todėl daug lengviau šią problemą spręsti padeda matematiniai / programiniai modeliai. Straipsnyje siūlomas naujas DoS atakų modelis, sujungiantis kelių tipų DoS atakas (srauto ir atminties išnaudojimo, netinkamo filtrų nustatymo) ir jų įtaką viena kitai. Remiantis šiuo naujai sukurtu modeliu atlikti eksperimentai, kurių metu vertinama skirtingų atakos ir aukos savybių reikšmių įtaka bendrai atakos sėkmės tikimybei.


Author(s):  
Budi Jaya ◽  
Y Yuhandri ◽  
S Sumijan

Denial of Service (DoS) attacks are one of the most common attacks on website, networks, routers and servers, including on router mikrotik. A DoS attack aims to render a network router unable to service requests from authorized users. The result will disrupt the operational activities of the organization and cause material and non-material losses. In this study, a simulation and analysis of DoS attacks using the Live Forensics method were carried out and the router security enhancement from rectangular software and hardware. From the research results obtained digital evidence of DoS attacks in the form of IP addresses and attacker activity logs. In addition, the increase in router security in terms of software by using Firewall Filter and Firewall Raw has proven effective in preventing attacks. While improving router security in terms of hardware by setting a reset button on the router and firewall devices is also very necessary so that the router can avoid physical attacks by irresponsible persons


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xinzhi Feng ◽  
Yang Yang ◽  
Xiaozhong Qi ◽  
Chunming Xu ◽  
Ze Ji

In recent years, the research of the network control system under the event triggering mechanism subjected to network attacks has attracted foreign and domestic scholars’ wide attention. Among all kinds of network attacks, denial-of-service (DoS) attack is considered the most likely to impact the performance of NCS significantly. The existing results on event triggering do not assess the occurrence of DoS attacks and controller changes, which will reduce the control performance of the addressed system. Aiming at the network control system attacked by DoS, this paper combines double-ended elastic event trigger control, DoS attack, and quantitative feedback control to study the stability of NCS with quantitative feedback of DoS attack triggered by a double-ended elastic event. Simulation examples show that this method can meet the requirements of control performance and counteract the known periodic DoS attacks, which save limited resources and improve the system’s antijamming ability.


The emergence of sensor networks as one of the dominant technology trends in the coming decades has posed numerous unique challenges on their security to researchers. These networks are likely to be composed of thousands of tiny sensor nodes, which are low-cost devices equipped with limited memory, processing, radio, and in many cases, without access to renewable energy resources. While the set of challenges in sensor networks are diverse, we focus on security of Wireless Sensor Network in this paper. First, we propose some of the security goal for Wireless Sensor Network. To perform any task in WSN, the goal is to ensure the best possible utilization of sensor resources so that the network could be kept functional as long as possible. In contrast to this crucial objective of sensor network management, a Denial of Service (DoS) attack targets to degrade the efficient use of network resources and disrupts the essential services in the network. DoS attack could be considered as one of th


Author(s):  
Sobana Sikkanan ◽  
Kasthuri M.

The internet is designed for processing and forwarding of any packet in a best effort manner. The packets carried by the internet may be malicious or not. Most of the time, internet architecture provides an unregulated path to victims. Denial-of-service (DoS) attack is the most common critical threat that causes devastating effects on the internet. The Botnet-based DoS attack aims to exhaust both the target resources and network bandwidth, thereby making the network resources unavailable for its valid users. The resources are utilized by either injecting a computer virus or flooding the network with useless traffic. This chapter provides a systematic analysis of the causes of DoS attacks, including motivations and history, analysis of different attacks, detection and protection techniques, various mitigation techniques, the limitations and challenges of DoS research areas. Finally, this chapter discusses some important research directions which will need more attention in the near future to guarantee the successful defense against DoS attacks.


2011 ◽  
Vol 22 (05) ◽  
pp. 1073-1098
Author(s):  
SHLOMI DOLEV ◽  
YUVAL ELOVICI ◽  
ALEX KESSELMAN ◽  
POLINA ZILBERMAN

As more and more services are provided by servers via the Internet, Denial-of-Service (DoS) attacks pose an increasing threat to the Internet community. A DoS attack overloads the target server with a large volume of adverse requests, thereby rendering the server unavailable to "well-behaved" users. In this paper, we propose two algorithms that allow attack targets to dynamically filter their incoming traffic based on a distributed policy. The proposed algorithms defend the target against DoS and distributed DoS (DDoS) attacks and simultaneously ensure that it continues to serve "well-behaved" users. In a nutshell, a target can define a filtering policy which consists of a set of traffic classification rules and the corresponding amounts of traffic for each rule. A filtering algorithm is enforced by the ISP's routers when a target is being overloaded with traffic. The goal is to maximize the amount of filtered traffic forwarded to the target, according to the filtering policy, from the ISP. The first proposed algorithm is a collaborative algorithm which computes and delivers to the target the best possible traffic mix in polynomial time. The second algorithm is a distributed non-collaborative algorithm for which we prove a lower bound on the worst-case performance.


2019 ◽  
Vol 2 (1) ◽  
pp. 6
Author(s):  
Abdullahi Mikail ◽  
Bernardi Pranggono

The shift to Cloud computing has brought with it its specific security challenges concerning the loss of control, trust and multi-tenancy especially in Infrastructure-as-a-Service (IaaS) Cloud model. This article focuses on the design and development of an intrusion detection system (IDS) that can handle security challenges in IaaS Cloud model using an open source IDS. We have implemented a proof-of-concept prototype on the most deployed hypervisor—VMware ESXi—and performed various real-world cyber-attacks, such as port scanning and denial of service (DoS) attacks to validate the practicality and effectiveness of our proposed IDS architecture. Based on our experimental results we found that our Security Onion-based IDS can provide the required protection in a reasonable and effective manner.


Author(s):  
Budi Jaya ◽  
Yuhandri Yunus ◽  
S Sumijan

Denial of Service (DoS) attacks are one of the most common attacks on website, networks, routers and servers, including on router mikrotik. A DoS attack aims to render a network router unable to service requests from authorized users. The result will disrupt the operational activities of the organization and cause material and non-material losses. In this study, a simulation and analysis of DoS attacks using the Live Forensics method were carried out and the router security enhancement from rectangular software and hardware. From the research results obtained digital evidence of DoS attacks in the form of IP addresses and attacker activity logs. In addition, the increase in router security in terms of software by using Firewall Filter and Firewall Raw has proven effective in preventing attacks. While improving router security in terms of hardware by setting a reset button on the router and firewall devices is also very necessary so that the router can avoid physical attacks by irresponsible persons.


2021 ◽  
Vol 15 (3) ◽  
pp. 106-128
Author(s):  
Muraleedharan N. ◽  
Janet B.

Denial of service (DoS) attack is one of the common threats to the availability of critical infrastructure and services. As more and more services are online enabled, the attack on the availability of these services may have a catastrophic impact on our day-to-day lives. Unlike the traditional volumetric DoS, the slow DoS attacks use legitimate connections with lesser bandwidth. Hence, it is difficult to detect slow DoS by monitoring bandwidth usage and traffic volume. In this paper, a novel machine learning model called ‘SCAFFY' to classify slow DoS on HTTP traffic using flow level parameters is explained. SCAFFY uses a multistage approach for the feature section and classification. Comparison of the classification performance of decision tree, random forest, XGBoost, and KNN algorithms are carried out using the flow parameters derived from the CICIDS2017 and SUEE datasets. A comparison of the result obtained from SCAFFY with two recent works available in the literature shows that the SCAFFY model outperforms the state-of-the-art approaches in classification accuracy.


Author(s):  
Sobana Sikkanan ◽  
Kasthuri M.

The internet is designed for processing and forwarding of any packet in a best effort manner. The packets carried by the internet may be malicious or not. Most of the time, internet architecture provides an unregulated path to victims. Denial-of-service (DoS) attack is the most common critical threat that causes devastating effects on the internet. The Botnet-based DoS attack aims to exhaust both the target resources and network bandwidth, thereby making the network resources unavailable for its valid users. The resources are utilized by either injecting a computer virus or flooding the network with useless traffic. This chapter provides a systematic analysis of the causes of DoS attacks, including motivations and history, analysis of different attacks, detection and protection techniques, various mitigation techniques, the limitations and challenges of DoS research areas. Finally, this chapter discusses some important research directions which will need more attention in the near future to guarantee the successful defense against DoS attacks.


Sign in / Sign up

Export Citation Format

Share Document